Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Structural and Electrical Properties of Metal Oxide and Organic Based Multi Heterojunction

Yıl 2022, Cilt: 12 Sayı: 1, 508 - 520, 15.06.2022
https://doi.org/10.31466/kfbd.1103586

Öz

In this study, semiconductor metal oxide ZnO compound was grown on glass/ITO substrate by electrochemical deposition technique. Later on, C24H12 organic semiconductor layer was deposited on glass/ITO/ZnO junction by thermal evaporation method and glass/ITO/ZnO/C24H12 multi heterojunction was fabricated. Surface analyses of produced layers was performed by Scanning electron microscopy (SEM) and it is seen that surface morphology of ZnO and C24H12 has nanoflake-nanorod structures and, nanowire structure, respectively. In addition, the elemental distribution of the ZnO layer was examined by Energy dispersive X-ray spectroscopy (EDS), and it was observed that Zn and O elements exhibited a homogeneous distribution within the layer. The electrical properties of Ag/ITO/ZnO/C24H12/Ag multi heterojunction were characterized under dark and 100mW/cm2 light intensity in the range of ±1.5V application potential. In the dark environment, series resistance (Rs), diode ideality factor (n), barrier height (∅b), reverse saturation current (I0) were ≈104Ω, 7.5-6.5, 0.647 eV and 5.7x10-7 A, respectively, while under 100mW/cm2 light intensity, these values were found to be ≈ 103Ω, 6.5-1.3, 0.914 eV and 1. 9x10-11 A, respectively. The photocurrent (Iph), photosensitivity (R) and photosensitivity (S) values, which are important parameters for the photoconductivity mechanism of the multi heterojunction, were determined at different voltage values under forward bias. In addition, the photovoltaic parameters of the multi heterojunction were calculated and the fill factor FF was found to be 0.56. As a result, it was observed that the Ag/ITO/ZnO/C24H12/Ag multi-heterojunction exhibited photodiode and photovoltaic behaviour.

Kaynakça

  • Al-Ta’ii, H. M. J., Periasamy, V., and Amin, Y. M., (2016). Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor. Plos One, 11(1), e0145423. https://doi.org/10.1371/journal.pone.0145423
  • Aldemir, D. A., Kökce, A., ve Özdemir, A. F., (2017). Schottky diyot parametrelerini belirlemede kullanılan metotların geniş bir sıcaklık aralığı için kıyaslanması. SAÜ Fen Bilimleri Enstitüsü Dergisi, 1-1. https://doi.org/10.16984/saufenbilder.279996
  • Allison, J., (1990). Electronic Engineering Semiconductors and Devices. London, England: McGraw-Hill College
  • Aslan, N., Kurt, M. Ş., and Koç, M. M., (2022). Morpho-structural and optoelectronic properties of diamond like carbon–germanium (DLC-Ge) composite thin films produced by magnetron sputtering. Optical Materials, 126, 112229.
  • Bartesaghi, D., Pérez, I. D. C., Kniepert, J., Roland, S., Turbiez, M., Neher, D., and Koster, L. J. A., (2015). Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nature Communications, 6(1), 7083. https://doi.org/10.1038/ncomms8083
  • Chandrappa, K. G., & Venkatesha, T. V., (2012). Electrochemical synthesis and photocatalytic property of zinc oxide nanoparticles. Nano-Micro Letters, 4(1), 14-24.
  • Chen, L., Puniredd, S. R., Tan, Y.-Z., Baumgarten, M., Zschieschang, U., Enkelmann, V., Pisula, W., Feng, X., Klauk, H., & Müllen, K., (2012). Hexathienocoronenes: synthesis and self-organization. Journal of the American Chemical Society, 134(43), 17869-17872.
  • Cheung, S. K., and Cheung, N. W., (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 49(2), 85-87. https://doi.org/10.1063/1.97359
  • Chrissanthopoulos, A., Baskoutas, S., Bouropoulos, N., Dracopoulos, V., Poulopoulos, P., and Yannopoulos, S., (2011). Synthesis and characterization of ZnO/NiO p–n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. Photonics and Nanostructures-Fundamentals and Applications, 9(2), 132-139.
  • Coşkun, B., Mensah-Darkwa, K., Soylu, M., Al-Sehemi, A. G., Dere, A., Al-Ghamdi, A., Gupta, R., and Yakuphanoglu, F., (2018). Optoelectrical properties of Al/p-Si/Fe: N doped ZnO/Al diodes. Thin solid films, 653, 236-248.
  • Çetinkaya, H. G., Tecimer, H., Uslu, H., & Altındal, Ş., (2013). Photovoltaic characteristics of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) at various temperatures. Current Applied Physics, 13(6), 1150-1156. https://doi.org/10.1016/j.cap.2013.03.010
  • Erdal, M. O., (2020). Photoresponse properties of coronene nanowires thin-film-based photodiode. Journal of Materials Science: Materials in Electronics, 31(21), 18980-18987.
  • Güllü, Ö., Asubay, S., Aydoğan, Ş., and Türüt, A., (2010). Electrical characterization of the Al/new fuchsin/n-Si organic-modified device. Physica E: Low-dimensional Systems and Nanostructures, 42(5), 1411-1416.
  • Gündüz, B., Turan, N., Kaya, E., and Çolak, N., (2013). The photo-electrical properties of the p-Si/Fe(II)–polymeric complex/Au diode. Synthetic Metals, 184, 73-82. https://doi.org/https://doi.org/10.1016/j.synthmet.2013.10.002
  • Ishteyaq, I., and Muzaffar, K., (2020). Performance characterization of (Pt, Au, Pd)/ZnO/n-Si/Al Schottky structures for varied temperature and UV illumination conditions. Superlattices and Microstructures, 145, 106604.
  • İlhan, M., Koç, M. M., Coşkun, B., Erkovan, M., and Yakuphanoğlu, F., (2021). Cd dopant effect on structural and optoelectronic properties of TiO2 solar detectors. Journal of Materials Science: Materials in Electronics, 32(2), 2346-2365.
  • Kampen, T. U., Park, S., and Zahn, D. R. T., (2002). Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer. Applied surface science, 190(1), 461-466. https://doi.org/https://doi.org/10.1016/S0169-4332(01)00919-9
  • Klauk, H., (2010). Organic thin-film transistors. Chemical Society Reviews, 39(7), 2643-2666.
  • Koç, M. M., Aslan, N., Erkovan, M., Aksakal, B., Uzun, O., Farooq, W. A., & Yakuphanoğlu, F., (2019). Electrical characterization of solar sensitive zinc oxide doped-amorphous carbon photodiode. Optik, 178, 316-326.
  • Kocyigit, A., Yilmaz, M., Aydogan, S., Incekara, U., and Sahin, Y., (2020). The performance of chitosan layer in Au/n-Si sandwich structures as a barrier modifier. Polymer Testing, 89, 106546.
  • Lee, J., Choi, Y., Kim, J., Park, M., and Im, S., (2002). Optimizing n-ZnO/p-Si heterojunctions for photodiode applications. Thin solid films, 403, 553-557.
  • Liu, B., & Zeng, H. C., (2003). Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 125(15), 4430-4431.
  • Marimuthu, T., Anandhan, N., & Thangamuthu, R., (2018). Electrochemical synthesis of one-dimensional ZnO nanostructures on ZnO seed layer for DSSC applications. Applied surface science, 428, 385-394.
  • Meng, H., Han, Y., Zhou, C., Jiang, Q., Shi, X., Zhan, C., & Zhang, R., (2020). Conductive Metal–Organic Frameworks: Design, Synthesis, and Applications. Small Methods, 4(10), 2000396.
  • Patel, A., Pataniya, P., Solanki, G. K., Sumesh, C. K., Patel, K. D., & Pathak, V. M., (2019). Fabrication, photoresponse and temperature dependence of n-VO2/n-MoSe2 heterojunction diode. Superlattices and Microstructures, 130, 160-167. https://doi.org/https://doi.org/10.1016/j.spmi.2019.04.032
  • Pathak, T. K., Kumar, V., Prakash, J., Purohit, L., Swart, H., & Kroon, R., (2016). Fabrication and characterization of nitrogen doped p-ZnO on n-Si heterojunctions. Sensors and Actuators A: Physical, 247, 475-481.
  • Pereira, M. J., Matta, M., Hirsch, L., Dufour, I., Briseno, A., Gali, S. M., Olivier, Y., Muccioli, L., Crosby, A., & Ayela, C., (2018). Application of Rubrene Air-Gap Transistors as Sensitive MEMS Physical Sensors. ACS applied materials & interfaces, 10(48), 41570-41577.
  • Pietruszka, R., Luka, G., Witkowski, B., Kopalko, K., Zielony, E., Bieganski, P., Placzek-Popko, E., & Godlewski, M., (2014). Electrical and photovoltaic properties of ZnO/Si heterostructures with ZnO films grown by atomic layer deposition. Thin solid films, 563, 28-31.
  • Pourmortazavi, S. M., Marashianpour, Z., Karimi, M. S., & Mohammad-Zadeh, M., (2015). Electrochemical synthesis and characterization of zinc carbonate and zinc oxide nanoparticles. Journal of Molecular Structure, 1099, 232-238.
  • Rajagopal Reddy, V., Prasad, C., Janardhanam, V., & Choi, C.-J., (2021). Electrical and carrier transport properties of Ti/α-amylase/p-InP MPS junction with a α-amylase polymer interlayer. Journal of Materials Science: Materials in Electronics, 32, 1-14. https://doi.org/10.1007/s10854-021-05532-2
  • Rana, V. S., Rajput, J. K., Pathak, T. K., & Purohit, L., (2018). Multilayer MgZnO/ZnO thin films for UV photodetectors. Journal of Alloys and Compounds, 764, 724-729.
  • Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E., and Moshfegh, A. Z., (2016). Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin solid films, 605, 2-19.
  • Serkan, U., Coşkun, B., Koç, M. M., ve Erkovan, M., (2021). Electrical Properties of ZnO: TiO2 Nanocomposite Thin Films. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 7(2), 221-231.
  • Sharma, S., Vyas, S., Periasamy, C., and Chakrabarti, P., (2014). Structural and optical characterization of ZnO thin films for optoelectronic device applications by RF sputtering technique. Superlattices and Microstructures, 75, 378-389.
  • Shetty, A., Roul, B., Mukundan, S., Mohan, L., Chandan, G., Vinoy, K. J., and Krupanidhi, S. B., (2015). Temperature dependent electrical characterisation of Pt/HfO2/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes. AIP Advances, 5(9). https://doi.org/10.1063/1.4930199
  • Ueda, K., Tabata, H., & Kawai, T., (2001). Magnetic and electric properties of transition-metal-doped ZnO films. Applied Physics Letters, 79(7), 988-990.
  • Ünal, F., (2013). InSe ince filmlerinin farklı alt tabanlar üzerinde büyütülmesi ve optik, yapısal, fotoelektrik özelliklerinin araştırılması. Yüksek Lisans Tezi, Kafkas Üniversitesi, Fen Bilimleri Enstitüsü, Kars.
  • Ünal, F., (2021). ITO cam üzerine büyütülen InSe/rubrene, CIS/rubrene, CIGS/rubrene, InSe/coronene, CIS/coronene, CIGS/coronene heteroeklemlerin yapısal, optik ve elektriksel özelliklerinin belirlenmesi, Doktora Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya.
  • Yuvaraja, S., Nawaz, A., Liu, Q., Dubal, D., Surya, S. G., Salama, K. N., and Sonar, P., (2020). Organic field-effect transistor-based flexible sensors. Chemical Society Reviews, 49(11), 3423-3460.
  • Zhang, D., Fan, B., Ying, L., Li, N., Brabec, C. J., Huang, F., and Cao, Y., (2021). Recent progress in thick‐film organic photovoltaic devices: Materials, devices, and processing. SusMat, 1(1), 4-23.
  • Zhang, D.W., Li, M., & Chen, C.F., (2020). Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chemical Society Reviews, 49(5), 1331-1343.
  • Zhang, X., Zhang, X., Wang, L., Wu, Y., Wang, Y., Gao, P., Han, Y., & Jie, J., (2013). ZnSe nanowire/Si p-n heterojunctions: Device construction and optoelectronic applications. Nanotechnology, 24(39), Article 395201. https://doi.org/10.1088/0957-4484/24/39/395201
  • Zhao, X., Nagashima, K., Zhang, G., Hosomi, T., Yoshida, H., Akihiro, Y., Kanai, M., Mizukami, W., Zhu, Z., & Takahashi, T., (2019). Synthesis of monodispersedly sized ZnO nanowires from randomly sized seeds. Nano Letters, 20(1), 599-605.

Metal Oksit ve Organik Bazlı Çoklu Heteroeklemin Yapısal ve Elektriksel Özelliklerinin İncelenmesi

Yıl 2022, Cilt: 12 Sayı: 1, 508 - 520, 15.06.2022
https://doi.org/10.31466/kfbd.1103586

Öz

Bu çalışmada, yarıiletken metal oksit ZnO bileşiği elektrokimyasal kaplama yöntemi kullanılarak cam/ITO üzerine büyütülmüştür. Daha sonra C24H12 organik yarıiletken katmanı termal buharlaştırma yöntemiyle cam/ITO/ZnO ekleminin üzerine kaplanmıştır ve cam/ITO/ZnO/C24H12 çoklu heteroeklemi üretilmiştir. Üretilen tabakaların yüzeysel analizi taramalı elektron mikroskobu (SEM) ile yapılmış, ZnO tabakasının nanopul (nanoflake) ve nanoçubuk, C24H12 tabakasının nanotel şeklinde büyüdüğü görülmüştür. Ayrıca ZnO tabakasının elementel dağılımı Enerji dağılımlı X-ray spektroskopisi (EDS) ile incelenmiş, Zn ve O elementlerinin tabaka içerisinde homojen bir dağılım sergiledikleri görülmüştür. ±1.5V uygulama potansiyeli aralığında karanlık ve 100mW/cm2 ışık şiddeti altında Ag/ITO/ZnO/C24H12/Ag çoklu heteroekleminin elektriksel özellikleri karakterize edilmiş. Karanlik ortamda, seri direnç (Rs), diyot idealite faktörü (n), engel yüksekliği (∅_b), ters doyma akımı (I0) sırasıyla ≈104Ω, 7.5-6.5, 0.647 eV ve 5,7E-7 A değerlerini almışken, 100mW/cm2 ışık şiddeti altında bu değerlerin sırasıyla ≈103Ω, 6.5-1.3, 0.914 eV ve 1.9E-11 A olduğu görülmüştür. Çoklu heteroeklemin fotoiletkenlik mekanizması için önemli parametreler olan fotoakım (Iph), fotoduyarlılık (R) ve fotohassasiyet (S) değerleri ileri besleme altında farklı voltaj değerlerinde belirlenmiştir. Ayrıca çoklu heteroeklemin fotovoltaik parametreleri hesaplanmış ve dolum faktörü FF’nin 0.56 olduğu görülmüştür. Tüm bu analizler sonucunda ürettiğimiz Ag/ITO/ZnO/C24H12/Ag çoklu heteroeklemin fotodiyot ve fotovoltaik davranış sergilediği görülmüştür.

Kaynakça

  • Al-Ta’ii, H. M. J., Periasamy, V., and Amin, Y. M., (2016). Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor. Plos One, 11(1), e0145423. https://doi.org/10.1371/journal.pone.0145423
  • Aldemir, D. A., Kökce, A., ve Özdemir, A. F., (2017). Schottky diyot parametrelerini belirlemede kullanılan metotların geniş bir sıcaklık aralığı için kıyaslanması. SAÜ Fen Bilimleri Enstitüsü Dergisi, 1-1. https://doi.org/10.16984/saufenbilder.279996
  • Allison, J., (1990). Electronic Engineering Semiconductors and Devices. London, England: McGraw-Hill College
  • Aslan, N., Kurt, M. Ş., and Koç, M. M., (2022). Morpho-structural and optoelectronic properties of diamond like carbon–germanium (DLC-Ge) composite thin films produced by magnetron sputtering. Optical Materials, 126, 112229.
  • Bartesaghi, D., Pérez, I. D. C., Kniepert, J., Roland, S., Turbiez, M., Neher, D., and Koster, L. J. A., (2015). Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nature Communications, 6(1), 7083. https://doi.org/10.1038/ncomms8083
  • Chandrappa, K. G., & Venkatesha, T. V., (2012). Electrochemical synthesis and photocatalytic property of zinc oxide nanoparticles. Nano-Micro Letters, 4(1), 14-24.
  • Chen, L., Puniredd, S. R., Tan, Y.-Z., Baumgarten, M., Zschieschang, U., Enkelmann, V., Pisula, W., Feng, X., Klauk, H., & Müllen, K., (2012). Hexathienocoronenes: synthesis and self-organization. Journal of the American Chemical Society, 134(43), 17869-17872.
  • Cheung, S. K., and Cheung, N. W., (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 49(2), 85-87. https://doi.org/10.1063/1.97359
  • Chrissanthopoulos, A., Baskoutas, S., Bouropoulos, N., Dracopoulos, V., Poulopoulos, P., and Yannopoulos, S., (2011). Synthesis and characterization of ZnO/NiO p–n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. Photonics and Nanostructures-Fundamentals and Applications, 9(2), 132-139.
  • Coşkun, B., Mensah-Darkwa, K., Soylu, M., Al-Sehemi, A. G., Dere, A., Al-Ghamdi, A., Gupta, R., and Yakuphanoglu, F., (2018). Optoelectrical properties of Al/p-Si/Fe: N doped ZnO/Al diodes. Thin solid films, 653, 236-248.
  • Çetinkaya, H. G., Tecimer, H., Uslu, H., & Altındal, Ş., (2013). Photovoltaic characteristics of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) at various temperatures. Current Applied Physics, 13(6), 1150-1156. https://doi.org/10.1016/j.cap.2013.03.010
  • Erdal, M. O., (2020). Photoresponse properties of coronene nanowires thin-film-based photodiode. Journal of Materials Science: Materials in Electronics, 31(21), 18980-18987.
  • Güllü, Ö., Asubay, S., Aydoğan, Ş., and Türüt, A., (2010). Electrical characterization of the Al/new fuchsin/n-Si organic-modified device. Physica E: Low-dimensional Systems and Nanostructures, 42(5), 1411-1416.
  • Gündüz, B., Turan, N., Kaya, E., and Çolak, N., (2013). The photo-electrical properties of the p-Si/Fe(II)–polymeric complex/Au diode. Synthetic Metals, 184, 73-82. https://doi.org/https://doi.org/10.1016/j.synthmet.2013.10.002
  • Ishteyaq, I., and Muzaffar, K., (2020). Performance characterization of (Pt, Au, Pd)/ZnO/n-Si/Al Schottky structures for varied temperature and UV illumination conditions. Superlattices and Microstructures, 145, 106604.
  • İlhan, M., Koç, M. M., Coşkun, B., Erkovan, M., and Yakuphanoğlu, F., (2021). Cd dopant effect on structural and optoelectronic properties of TiO2 solar detectors. Journal of Materials Science: Materials in Electronics, 32(2), 2346-2365.
  • Kampen, T. U., Park, S., and Zahn, D. R. T., (2002). Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer. Applied surface science, 190(1), 461-466. https://doi.org/https://doi.org/10.1016/S0169-4332(01)00919-9
  • Klauk, H., (2010). Organic thin-film transistors. Chemical Society Reviews, 39(7), 2643-2666.
  • Koç, M. M., Aslan, N., Erkovan, M., Aksakal, B., Uzun, O., Farooq, W. A., & Yakuphanoğlu, F., (2019). Electrical characterization of solar sensitive zinc oxide doped-amorphous carbon photodiode. Optik, 178, 316-326.
  • Kocyigit, A., Yilmaz, M., Aydogan, S., Incekara, U., and Sahin, Y., (2020). The performance of chitosan layer in Au/n-Si sandwich structures as a barrier modifier. Polymer Testing, 89, 106546.
  • Lee, J., Choi, Y., Kim, J., Park, M., and Im, S., (2002). Optimizing n-ZnO/p-Si heterojunctions for photodiode applications. Thin solid films, 403, 553-557.
  • Liu, B., & Zeng, H. C., (2003). Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 125(15), 4430-4431.
  • Marimuthu, T., Anandhan, N., & Thangamuthu, R., (2018). Electrochemical synthesis of one-dimensional ZnO nanostructures on ZnO seed layer for DSSC applications. Applied surface science, 428, 385-394.
  • Meng, H., Han, Y., Zhou, C., Jiang, Q., Shi, X., Zhan, C., & Zhang, R., (2020). Conductive Metal–Organic Frameworks: Design, Synthesis, and Applications. Small Methods, 4(10), 2000396.
  • Patel, A., Pataniya, P., Solanki, G. K., Sumesh, C. K., Patel, K. D., & Pathak, V. M., (2019). Fabrication, photoresponse and temperature dependence of n-VO2/n-MoSe2 heterojunction diode. Superlattices and Microstructures, 130, 160-167. https://doi.org/https://doi.org/10.1016/j.spmi.2019.04.032
  • Pathak, T. K., Kumar, V., Prakash, J., Purohit, L., Swart, H., & Kroon, R., (2016). Fabrication and characterization of nitrogen doped p-ZnO on n-Si heterojunctions. Sensors and Actuators A: Physical, 247, 475-481.
  • Pereira, M. J., Matta, M., Hirsch, L., Dufour, I., Briseno, A., Gali, S. M., Olivier, Y., Muccioli, L., Crosby, A., & Ayela, C., (2018). Application of Rubrene Air-Gap Transistors as Sensitive MEMS Physical Sensors. ACS applied materials & interfaces, 10(48), 41570-41577.
  • Pietruszka, R., Luka, G., Witkowski, B., Kopalko, K., Zielony, E., Bieganski, P., Placzek-Popko, E., & Godlewski, M., (2014). Electrical and photovoltaic properties of ZnO/Si heterostructures with ZnO films grown by atomic layer deposition. Thin solid films, 563, 28-31.
  • Pourmortazavi, S. M., Marashianpour, Z., Karimi, M. S., & Mohammad-Zadeh, M., (2015). Electrochemical synthesis and characterization of zinc carbonate and zinc oxide nanoparticles. Journal of Molecular Structure, 1099, 232-238.
  • Rajagopal Reddy, V., Prasad, C., Janardhanam, V., & Choi, C.-J., (2021). Electrical and carrier transport properties of Ti/α-amylase/p-InP MPS junction with a α-amylase polymer interlayer. Journal of Materials Science: Materials in Electronics, 32, 1-14. https://doi.org/10.1007/s10854-021-05532-2
  • Rana, V. S., Rajput, J. K., Pathak, T. K., & Purohit, L., (2018). Multilayer MgZnO/ZnO thin films for UV photodetectors. Journal of Alloys and Compounds, 764, 724-729.
  • Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E., and Moshfegh, A. Z., (2016). Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin solid films, 605, 2-19.
  • Serkan, U., Coşkun, B., Koç, M. M., ve Erkovan, M., (2021). Electrical Properties of ZnO: TiO2 Nanocomposite Thin Films. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 7(2), 221-231.
  • Sharma, S., Vyas, S., Periasamy, C., and Chakrabarti, P., (2014). Structural and optical characterization of ZnO thin films for optoelectronic device applications by RF sputtering technique. Superlattices and Microstructures, 75, 378-389.
  • Shetty, A., Roul, B., Mukundan, S., Mohan, L., Chandan, G., Vinoy, K. J., and Krupanidhi, S. B., (2015). Temperature dependent electrical characterisation of Pt/HfO2/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes. AIP Advances, 5(9). https://doi.org/10.1063/1.4930199
  • Ueda, K., Tabata, H., & Kawai, T., (2001). Magnetic and electric properties of transition-metal-doped ZnO films. Applied Physics Letters, 79(7), 988-990.
  • Ünal, F., (2013). InSe ince filmlerinin farklı alt tabanlar üzerinde büyütülmesi ve optik, yapısal, fotoelektrik özelliklerinin araştırılması. Yüksek Lisans Tezi, Kafkas Üniversitesi, Fen Bilimleri Enstitüsü, Kars.
  • Ünal, F., (2021). ITO cam üzerine büyütülen InSe/rubrene, CIS/rubrene, CIGS/rubrene, InSe/coronene, CIS/coronene, CIGS/coronene heteroeklemlerin yapısal, optik ve elektriksel özelliklerinin belirlenmesi, Doktora Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya.
  • Yuvaraja, S., Nawaz, A., Liu, Q., Dubal, D., Surya, S. G., Salama, K. N., and Sonar, P., (2020). Organic field-effect transistor-based flexible sensors. Chemical Society Reviews, 49(11), 3423-3460.
  • Zhang, D., Fan, B., Ying, L., Li, N., Brabec, C. J., Huang, F., and Cao, Y., (2021). Recent progress in thick‐film organic photovoltaic devices: Materials, devices, and processing. SusMat, 1(1), 4-23.
  • Zhang, D.W., Li, M., & Chen, C.F., (2020). Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chemical Society Reviews, 49(5), 1331-1343.
  • Zhang, X., Zhang, X., Wang, L., Wu, Y., Wang, Y., Gao, P., Han, Y., & Jie, J., (2013). ZnSe nanowire/Si p-n heterojunctions: Device construction and optoelectronic applications. Nanotechnology, 24(39), Article 395201. https://doi.org/10.1088/0957-4484/24/39/395201
  • Zhao, X., Nagashima, K., Zhang, G., Hosomi, T., Yoshida, H., Akihiro, Y., Kanai, M., Mizukami, W., Zhu, Z., & Takahashi, T., (2019). Synthesis of monodispersedly sized ZnO nanowires from randomly sized seeds. Nano Letters, 20(1), 599-605.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Sitki Aktaş 0000-0002-9143-6752

Fatih Ünal 0000-0002-6155-7051

Erken Görünüm Tarihi 15 Haziran 2022
Yayımlanma Tarihi 15 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 1

Kaynak Göster

APA Aktaş, S., & Ünal, F. (2022). Metal Oksit ve Organik Bazlı Çoklu Heteroeklemin Yapısal ve Elektriksel Özelliklerinin İncelenmesi. Karadeniz Fen Bilimleri Dergisi, 12(1), 508-520. https://doi.org/10.31466/kfbd.1103586