Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Cap and Buffer Layer Effect in Co/Ni Thin Films by Ferromagnetic Resonance Technique

Yıl 2023, Cilt: 13 Sayı: 2, 724 - 733, 15.06.2023
https://doi.org/10.31466/kfbd.1282051

Öz

In this study, the magnetic properties of Si(100)/X5/(Co0.3/Ni0.5)3/Y5 (X: Pt, Cu and Y: Pt, Cu, all thicknesses are nm) multilayers were investigated using ferromagnetic resonance technique (FMR). In sample sets all layers (buffer, cap, and Co) were grown by magnetron sputtering while Ni sub-layers were grown by molecular beam epitaxy (MBE) at high vacuum. The effective magnetic anisotropy is 300 mT when copper is used as the buffer and cap layer, 290 mT when the buffer layer is copper, and the cap layer is Pt. On the other hand, it is seen that the effective magnetic anisotropy is 350 mT when Pt is used as buffer and cap layer, and 150 mT when Pt buffer and Cu cap layer are used. Furthermore, magnetic easy axis is out of plane when the Pt buffer layer is used, while the magnetic easy axis is parallel to the plane when the Cu buffer layer is used. The results show that the buffer and cap layers of Co/Ni thin films, which are frequently used in the field of spintronics influence the magnetic properties.

Destekleyen Kurum

BANDIRMA ONYEDİ EYLÜL ÜNİVERSİTESİ

Proje Numarası

BAP-20-1003-007

Teşekkür

This study was supported by Research Projects with Foundation Number BAP-20-1003-007, Bandırma Onyedi Eylül University Scientific Research Commission, Turkey.

Kaynakça

  • Berger, A. (2020). The 2020 magnetism roadmap Abstract.
  • Bersweiler, M., Dumesnil, K., Lacour, D., & Hehn, M. (2016). Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers. Journal of Physics Condensed Matter, 28(33), 336005. https://doi.org/10.1088/0953-8984/28/33/336005
  • Freitas, P. P., Cardoso, F. A., Martins, V. C., Martins, S. A. M., Loureiro, J., Amaral, J., Chaves, R. C., Cardoso, S., Fonseca, L. P., Sebastião, A. M., Pannetier-Lecoeur, M., & Fermon, C. (2012). Spintronic platforms for biomedical applications. Lab on a Chip, 12(3), 546–557. https://doi.org/10.1039/c1lc20791a
  • Gottwald, M., Andrieu, S., Gimbert, F., Shipton, E., Calmels, L., Magen, C., Snoeck, E., Liberati, M., Hauet, T., Arenholz, E., Mangin, S., & Fullerton, E. E. (2012). Co/Ni(111) superlattices studied by microscopy, x-ray absorption, and ab initio calculations. Physical Review B - Condensed Matter and Materials Physics, 86(1), 1–15. https://doi.org/10.1103/PhysRevB.86.014425
  • Haertinger, M., Back, C. H., Yang, S. H., Parkin, S. S. P., & Woltersdorf, G. (2013). Properties of Ni/Co multilayers as a function of the number of multilayer repetitions. Journal of Physics D: Applied Physics, 46(17). https://doi.org/10.1088/0022-3727/46/17/175001
  • Ho, P., Tan, A. K. C., Goolaup, S., Oyarce, A. L. G., Raju, M., Huang, L. S., Soumyanarayanan, A., & Panagopoulos, C. (2019). Geometrically tailored skyrmions at zero magnetic field in multilayered nanostructures. Physical Review Applied, 11(2), 1. https://doi.org/10.1103/PhysRevApplied.11.024064
  • Kalaycı, T. (2022). Influence of Layer Thickness on Magnetoresistance Properties of Multilayered Thin Films. Türk Doğa ve Fen Dergisi, 11(3), 118–122. https://doi.org/10.46810/tdfd.1158730
  • Kalaycı, T., Deger, C., Akbulut, S., & Yildiz, F. (2017). Tuning magnetic properties of non-collinear magnetization configuration in Pt/[Pt/Co]6/Pt/Co/Pt multilayer structure. Journal of Magnetism and Magnetic Materials, 436, 11–16. https://doi.org/10.1016/j.jmmm.2017.04.008
  • Lee, D., Kim, J., Park, H., Lee, K. J., Ju, B. K., Koo, H. C., Min, B. C., & Lee, O. (2018). Spin-Orbit Torque and Magnetic Damping in Tailored Ferromagnetic Bilayers. Physical Review Applied, 10(2), 1. https://doi.org/10.1103/PhysRevApplied.10.024029
  • Lueng, C., Lupo, P., Metaxas, P. J., Kostylev, M., & Adeyeye, A. O. (2016). Nanopatterning-Enhanced Sensitivity and Response Time of Dynamic Palladium/Cobalt/Palladium Hydrogen Gas Sensors. Advanced Materials Technologies, 1(5). https://doi.org/10.1002/admt.201600097
  • Lueng, C., Lupo, P., Schefer, T., Metaxas, P. J., Adeyeye, A. O., & Kostylev, M. (2019). Sensitivity of ferromagnetic resonance in PdCo alloyed films to hydrogen gas. International Journal of Hydrogen Energy, 44(14), 7715–7724. https://doi.org/10.1016/j.ijhydene.2019.01.234
  • Milyaev, M., Naumova, L., Proglyado, V., Krinitsina, T., Bannikova, N., & Ustinov, V. (2019). High GMR Effect and Perfect Microstructure in CoFe/Cu Multilayers. IEEE Transactions on Magnetics, 55(4), 30–33. https://doi.org/10.1109/TMAG.2019.2892666
  • Mukhopadhyay, A., Koyiloth Vayalil, S., Graulich, D., Ahamed, I., Francoual, S., Kashyap, A., Kuschel, T., & Anil Kumar, P. S. (2020). Asymmetric modification of the magnetic proximity effect in Pt/Co/Pt trilayers by the insertion of a Ta buffer layer. Physical Review B, 102(14), 144435. https://doi.org/10.1103/PhysRevB.102.144435
  • Peixoto, L., Magalhães, R., Navas, D., Moraes, S., Redondo, C., Morales, R., Araújo, J. P., & Sousa, C. T. (2020). Magnetic nanostructures for emerging biomedical applications. Applied Physics Reviews, 7(1). https://doi.org/10.1063/1.5121702
  • Piraux, L. (2020). Magnetic nanowires. Applied Sciences (Switzerland), 10(5). https://doi.org/10.3390/app10051832 Posth, O., Hassel, C., Spasova, M., Dumpich, G., Lindner, J., & Mangin, S. (2009). Influence of growth parameters on the perpendicular magnetic anisotropy of [Co/Ni] multilayers and its temperature dependence. Journal of Applied Physics, 106(2). https://doi.org/10.1063/1.3176901
  • Prudnikov, P. V., Prudnikov, V. V., Mamonova, M. V., & Piskunova, N. I. (2019). Influence of anisotropy on magnetoresistance in magnetic multilayer structures. Journal of Magnetism and Magnetic Materials, 482(March), 201–205. https://doi.org/10.1016/j.jmmm.2019.03.061
  • Sabino, M. P. R., Tran, M., Hin Sim, C., Ji Feng, Y., & Eason, K. (2014). Seed influence on the ferromagnetic resonance response of Co/Ni multilayers. Journal of Applied Physics, 115(17), 15–18. https://doi.org/10.1063/1.4865212
  • Saravanan, L., Raja, M. M., Prabhu, D., Pandiyarasan, V., Ikeda, H., & Therese, H. A. (2018). Perpendicular magnetic anisotropy in Mo/Co2FeAl0.5Si0.5/MgO/Mo multilayers with optimal Mo buffer layer thickness. Journal of Magnetism and Magnetic Materials, 454, 267–273. https://doi.org/10.1016/j.jmmm.2018.01.097
  • Shi, H., Li, M., Fang, S., Zhou, W., Yang, C., Jiang, Y., Wang, D., & Yu, G. (2018). Characterization of the interfacial structure and perpendicular magnetic anisotropy in CoFeB-MgO structures with different buffer layers. Surface and Interface Analysis, 50(1), 59–64. https://doi.org/10.1002/sia.6335
  • Wang, G., Zhang, Z., Ma, B., & Jin, Q. Y. (2013). Magnetic anisotropy and thermal stability study of perpendicular Co/Ni multilayers. Journal of Applied Physics, 113(17), 111–114. https://doi.org/10.1063/1.4799524
  • Yang, E., Sokalski, V. M., Moneck, M. T., Bromberg, D. M., & Zhu, J. G. (2013). Annealing effect and under/capping layer study on Co/Ni multilayer thin films for domain wall motion. Journal of Applied Physics, 113(17), 3–6. https://doi.org/10.1063/1.4795720
  • You, L., Sousa, R. C., Bandiera, S., Rodmacq, B., & Dieny, B. (2012). Co/Ni multilayers with perpendicular anisotropy for spintronic device applications. Applied Physics Letters, 100(17), 1–4. https://doi.org/10.1063/1.4704184

Co/Ni İnce Filmlerde Kapak ve Tampon Katmanı Etkisinin Ferromanyetik Rezonans Tekniği ile İncelenmesi

Yıl 2023, Cilt: 13 Sayı: 2, 724 - 733, 15.06.2023
https://doi.org/10.31466/kfbd.1282051

Öz

Bu çalışmada, Si(100)/X5/(Co0.3/Ni0.5)3/Y5 (X: Pt, Cu ve Y: Pt, Cu, tüm katmanların kalınlığı nanometre) çok tabakalarının manyetik özellikleri ferromanyetik rezonans tekniği kullanılarak incelenmiştir. Numune setlerinde tampon, kapak ve Co katmanları magnetron püskürtme tekniği ile büyütülürken, Ni alt katmanları yüksek vakumda moleküler ışın epitaksisi (MBE) ile büyütüldü. Etkin manyetik anizotropi, tampon ve üst katman olarak bakır kullanıldığında 300 mT, tampon katman bakır ve üst katman Pt olduğunda 290 mT'dir. Öte yandan tampon ve kapak tabakası olarak Pt kullanıldığında etkin manyetik anizotropinin 350 mT, Pt tampon ve Cu üst tabakası kullanıldığında ise 150 mT olduğu görülmektedir. Ayrıca, Pt tampon tabakası kullanıldığında manyetik kolay eksen düzlem dışındayken, Cu tampon tabakası kullanıldığında manyetik kolay eksen düzleme paraleldir. Sonuçlar, spintronik alanında sıklıkla kullanılan Co/Ni ince filmlerde tampon ve kapak katmanların manyetik özellikleri etkilediğini göstermektedir.

Proje Numarası

BAP-20-1003-007

Kaynakça

  • Berger, A. (2020). The 2020 magnetism roadmap Abstract.
  • Bersweiler, M., Dumesnil, K., Lacour, D., & Hehn, M. (2016). Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers. Journal of Physics Condensed Matter, 28(33), 336005. https://doi.org/10.1088/0953-8984/28/33/336005
  • Freitas, P. P., Cardoso, F. A., Martins, V. C., Martins, S. A. M., Loureiro, J., Amaral, J., Chaves, R. C., Cardoso, S., Fonseca, L. P., Sebastião, A. M., Pannetier-Lecoeur, M., & Fermon, C. (2012). Spintronic platforms for biomedical applications. Lab on a Chip, 12(3), 546–557. https://doi.org/10.1039/c1lc20791a
  • Gottwald, M., Andrieu, S., Gimbert, F., Shipton, E., Calmels, L., Magen, C., Snoeck, E., Liberati, M., Hauet, T., Arenholz, E., Mangin, S., & Fullerton, E. E. (2012). Co/Ni(111) superlattices studied by microscopy, x-ray absorption, and ab initio calculations. Physical Review B - Condensed Matter and Materials Physics, 86(1), 1–15. https://doi.org/10.1103/PhysRevB.86.014425
  • Haertinger, M., Back, C. H., Yang, S. H., Parkin, S. S. P., & Woltersdorf, G. (2013). Properties of Ni/Co multilayers as a function of the number of multilayer repetitions. Journal of Physics D: Applied Physics, 46(17). https://doi.org/10.1088/0022-3727/46/17/175001
  • Ho, P., Tan, A. K. C., Goolaup, S., Oyarce, A. L. G., Raju, M., Huang, L. S., Soumyanarayanan, A., & Panagopoulos, C. (2019). Geometrically tailored skyrmions at zero magnetic field in multilayered nanostructures. Physical Review Applied, 11(2), 1. https://doi.org/10.1103/PhysRevApplied.11.024064
  • Kalaycı, T. (2022). Influence of Layer Thickness on Magnetoresistance Properties of Multilayered Thin Films. Türk Doğa ve Fen Dergisi, 11(3), 118–122. https://doi.org/10.46810/tdfd.1158730
  • Kalaycı, T., Deger, C., Akbulut, S., & Yildiz, F. (2017). Tuning magnetic properties of non-collinear magnetization configuration in Pt/[Pt/Co]6/Pt/Co/Pt multilayer structure. Journal of Magnetism and Magnetic Materials, 436, 11–16. https://doi.org/10.1016/j.jmmm.2017.04.008
  • Lee, D., Kim, J., Park, H., Lee, K. J., Ju, B. K., Koo, H. C., Min, B. C., & Lee, O. (2018). Spin-Orbit Torque and Magnetic Damping in Tailored Ferromagnetic Bilayers. Physical Review Applied, 10(2), 1. https://doi.org/10.1103/PhysRevApplied.10.024029
  • Lueng, C., Lupo, P., Metaxas, P. J., Kostylev, M., & Adeyeye, A. O. (2016). Nanopatterning-Enhanced Sensitivity and Response Time of Dynamic Palladium/Cobalt/Palladium Hydrogen Gas Sensors. Advanced Materials Technologies, 1(5). https://doi.org/10.1002/admt.201600097
  • Lueng, C., Lupo, P., Schefer, T., Metaxas, P. J., Adeyeye, A. O., & Kostylev, M. (2019). Sensitivity of ferromagnetic resonance in PdCo alloyed films to hydrogen gas. International Journal of Hydrogen Energy, 44(14), 7715–7724. https://doi.org/10.1016/j.ijhydene.2019.01.234
  • Milyaev, M., Naumova, L., Proglyado, V., Krinitsina, T., Bannikova, N., & Ustinov, V. (2019). High GMR Effect and Perfect Microstructure in CoFe/Cu Multilayers. IEEE Transactions on Magnetics, 55(4), 30–33. https://doi.org/10.1109/TMAG.2019.2892666
  • Mukhopadhyay, A., Koyiloth Vayalil, S., Graulich, D., Ahamed, I., Francoual, S., Kashyap, A., Kuschel, T., & Anil Kumar, P. S. (2020). Asymmetric modification of the magnetic proximity effect in Pt/Co/Pt trilayers by the insertion of a Ta buffer layer. Physical Review B, 102(14), 144435. https://doi.org/10.1103/PhysRevB.102.144435
  • Peixoto, L., Magalhães, R., Navas, D., Moraes, S., Redondo, C., Morales, R., Araújo, J. P., & Sousa, C. T. (2020). Magnetic nanostructures for emerging biomedical applications. Applied Physics Reviews, 7(1). https://doi.org/10.1063/1.5121702
  • Piraux, L. (2020). Magnetic nanowires. Applied Sciences (Switzerland), 10(5). https://doi.org/10.3390/app10051832 Posth, O., Hassel, C., Spasova, M., Dumpich, G., Lindner, J., & Mangin, S. (2009). Influence of growth parameters on the perpendicular magnetic anisotropy of [Co/Ni] multilayers and its temperature dependence. Journal of Applied Physics, 106(2). https://doi.org/10.1063/1.3176901
  • Prudnikov, P. V., Prudnikov, V. V., Mamonova, M. V., & Piskunova, N. I. (2019). Influence of anisotropy on magnetoresistance in magnetic multilayer structures. Journal of Magnetism and Magnetic Materials, 482(March), 201–205. https://doi.org/10.1016/j.jmmm.2019.03.061
  • Sabino, M. P. R., Tran, M., Hin Sim, C., Ji Feng, Y., & Eason, K. (2014). Seed influence on the ferromagnetic resonance response of Co/Ni multilayers. Journal of Applied Physics, 115(17), 15–18. https://doi.org/10.1063/1.4865212
  • Saravanan, L., Raja, M. M., Prabhu, D., Pandiyarasan, V., Ikeda, H., & Therese, H. A. (2018). Perpendicular magnetic anisotropy in Mo/Co2FeAl0.5Si0.5/MgO/Mo multilayers with optimal Mo buffer layer thickness. Journal of Magnetism and Magnetic Materials, 454, 267–273. https://doi.org/10.1016/j.jmmm.2018.01.097
  • Shi, H., Li, M., Fang, S., Zhou, W., Yang, C., Jiang, Y., Wang, D., & Yu, G. (2018). Characterization of the interfacial structure and perpendicular magnetic anisotropy in CoFeB-MgO structures with different buffer layers. Surface and Interface Analysis, 50(1), 59–64. https://doi.org/10.1002/sia.6335
  • Wang, G., Zhang, Z., Ma, B., & Jin, Q. Y. (2013). Magnetic anisotropy and thermal stability study of perpendicular Co/Ni multilayers. Journal of Applied Physics, 113(17), 111–114. https://doi.org/10.1063/1.4799524
  • Yang, E., Sokalski, V. M., Moneck, M. T., Bromberg, D. M., & Zhu, J. G. (2013). Annealing effect and under/capping layer study on Co/Ni multilayer thin films for domain wall motion. Journal of Applied Physics, 113(17), 3–6. https://doi.org/10.1063/1.4795720
  • You, L., Sousa, R. C., Bandiera, S., Rodmacq, B., & Dieny, B. (2012). Co/Ni multilayers with perpendicular anisotropy for spintronic device applications. Applied Physics Letters, 100(17), 1–4. https://doi.org/10.1063/1.4704184
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klasik Fizik (Diğer)
Bölüm Makaleler
Yazarlar

Taner Kalaycı 0000-0002-6374-2373

Proje Numarası BAP-20-1003-007
Erken Görünüm Tarihi 15 Haziran 2023
Yayımlanma Tarihi 15 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 2

Kaynak Göster

APA Kalaycı, T. (2023). Investigation of Cap and Buffer Layer Effect in Co/Ni Thin Films by Ferromagnetic Resonance Technique. Karadeniz Fen Bilimleri Dergisi, 13(2), 724-733. https://doi.org/10.31466/kfbd.1282051