Araştırma Makalesi
BibTex RIS Kaynak Göster

Convective Drying of the Zucchini Slices; Impact of Pretreatments on the Drying Characteristics and Color Properties, Evaluation of Artificial Neural Network Modeling and Thin-Layer Modeling

Yıl 2024, Cilt: 14 Sayı: 1, 168 - 193, 15.03.2024
https://doi.org/10.31466/kfbd.1373651

Öz

This study focused on the impact of citric acid, hot water blanching, and ultrasound pretreatment on the drying of zucchini slices, color properties, and the comparison of artificial neural network (ANN) and thin-layer modeling. The pretreatments enhanced the drying rate and reduced drying time. Ultrasound pretreatment was observed as the most effective, with a reduction rate of the drying time as 40%. Besides, mass transfer and moisture diffusion phenomena were positively affected by pretreatments, depending on the increment of the drying rate. The highest mass transfer coefficient (hm), moisture diffusivity (D) by the Dincer and Dost model, and effective moisture diffusivity (Deff) by the Crank equation were obtained with ultrasound pretreatment. On the other hand, Midilli and Kucuk, Parabolic, and Page gave the best predictions among the thin-layer models. However, ANN modeling had a better performance than thin-layer modeling due to a higher determination coefficient (R2) and lower root mean square error (RMSE) values. Color properties of the zucchini slices were affected by drying processes. In general, the redness and yellowness of the zucchini slices increased; however, lightness did not show statistical significance. Additionally, citric acid pretreatment gave the lowest total color difference (∆E).

Kaynakça

  • Abbaspour-Gilandeh, Y., Kaveh, M., Fatemi, H., Khalife, E., Witrowa-Rajchert, D., & Nowacka, M. (2021). Effect of Pretreatments on Convective and Infrared Drying Kinetics, Energy Consumption and Quality of Terebinth. Applied Sciences, 11(16), 7672.
  • Adnan, M., Gul, S., Batool, S., Fatima, B., Rehman, A., Yaqoob, S., Shabir, H., Yousaf, T., Mussarat, S., & Ali, N. (2017). A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. The Journal of Phytopharmacology, 6(2), 133-139.
  • Aghbashlo, M., Hosseinpour, S., & Mujumdar, A. S. (2015). Application of artificial neural networks (ANNs) in drying technology: a comprehensive review. Drying technology, 33(12), 1397-1462.
  • Agrawal, S. G., & Methekar, R. N. (2017). Mathematical model for heat and mass transfer during convective drying of pumpkin. Food and Bioproducts Processing, 101, 68-73.
  • Akar, G., & Barutçu Mazı, I. (2019). Color change, ascorbic acid degradation kinetics, and rehydration behavior of kiwifruit as affected by different drying methods. Journal of food process engineering, 42(3), e13011.
  • Anonymous. (2023). Production of vegetables, 2022, 2023. Turkish Statistical Institute Retrieved 22.09.2023.
  • Arı, A., & Berberler, M. E. (2017). Yapay sinir ağları ile tahmin ve sınıflandırma problemlerinin çözümü için arayüz tasarımı. Acta Infologica, 1(2), 55-73.
  • Bassey, E. J., Cheng, J.-H., & Sun, D.-W. (2021). Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology, 112, 137-148.
  • Beck, S. M., Sabarez, H., Gaukel, V., & Knoerzer, K. (2014). Enhancement of convective drying by application of airborne ultrasound–a response surface approach. Ultrasonics Sonochemistry, 21(6), 2144-2150.
  • Beigi, M. (2016). Influence of drying air parameters on mass transfer characteristics of apple slices. Heat and Mass Transfer, 52(10), 2213-2221.
  • Beigi, M. (2017). Mass transfer parameters of celeriac during vacuum drying. Heat and Mass Transfer, 53(4), 1327-1334.
  • Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. (2016). Impact of Sonication on Shelf Life, Sensory, and Nutritional Quality of Food. In Food Processing Technologies (pp. 247-264). CRC Press.
  • Bezerra, C. V., da Silva, L. H. M., Corrêa, D. F., & Rodrigues, A. M. (2015). A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel. International Journal of Heat and Mass Transfer, 85, 750-755.
  • Bhagya Raj, G., & Dash, K. K. (2022). Comprehensive study on applications of artificial neural network in food process modeling. Critical Reviews in Food Science and Nutrition, 62(10), 2756-2783.
  • Bi, J., Yang, A., Liu, X., Wu, X., Chen, Q., Wang, Q., ... & Wang, X. (2015). Effects of pretreatments on explosion puffing drying kinetics of apple chips. LWT-Food Science and Technology, 60(2), 1136-1142.
  • Bozkir, H., & Ergün, A. R. (2020). Effect of sonication and osmotic dehydration applications on the hot air drying kinetics and quality of persimmon. Lwt, 131, 109704.
  • Brandão, S. C., Diniz, G. F., da Silva, J. H., da Silva, E. S., de Medeiros, R. A., & Azoubel, P. M. (2022). Ultrasound-Assisted Vacuum Drying of Melon: Influence on Kinetics, Water Activity and Color. In Melon Breeding and Genetics: Developments in Food Quality & Safety (pp. 127-136). ACS Publications.
  • Carvajal, F., Martinez, C., Jamilena, M., & Garrido, D. (2011). Differential response of zucchini varieties to low storage temperature. Scientia Horticulturae, 130(1), 90-96.
  • Chayjan, R. A., Dibagar, N., & Alaei, B. (2017). Drying characteristics of zucchini slices under periodic infrared-microwave vacuum conditions. Heat and Mass Transfer, 53, 3473-3485.
  • Chemat, F., & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813-835.
  • Chen, X.D., Putranto, A., 2013. Modelling Drying Processes: A Reaction Engineering Approach. Cambridge University, New York.
  • Chhe, C., Imaizumi, T., Tanaka, F., & Uchino, T. (2018). Effects of hot-water blanching on the biological and physicochemical properties of sweet potato slices. Engineering in agriculture, environment and food, 11(1), 19-24.
  • Chokphoemphun, S., Hongkong, S., & Chokphoemphun, S. (2023). Evaluation of drying behavior and characteristics of the potato slices in multi–stage convective cabinet dryer: application of artificial neural network. Information Processing in Agriculture.
  • Cömert, E. D., Mogol, B. A., & Gökmen, V. (2020). Relationship between color and antioxidant capacity of fruits and vegetables. Current Research in Food Science, 2, 1-10.
  • Crank J (1975) The mathematics of diffusion. Clarendon Press
  • Decker, D. S. (1988). Origin (s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Economic Botany, 42, 4-15.
  • Demiray, E. (2019). Drying characteristics and kinetics of lovastatin degradation of oyster mushroom (Pleurotus Ostreatus) slices. Latin American Applied Research-An international journal, 49(4), 269-274.
  • Demiray, E., Seker, A., & Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat and Mass Transfer, 53, 1817-1827.
  • Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., ... & Xiao, H. W. (2019). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Critical reviews in food science and nutrition, 59(9), 1408-1432.
  • Dincer, I. (1998). Moisture transfer analysis during drying of slab woods. Heat and mass transfer, 34(4), 317-320.
  • Dincer, I., & Dost, S. (1995). An analytical model for moisture diffusion in solid objects during drying. Drying Technology, 13(1-2), 425-435.
  • Dincer, I., & Dost, S. (1996). A modelling study for moisture diffusivities and moisture transfer coefficients in drying of solid objects. International Journal of Energy Research, 20(6), 531-539.
  • Dincer, I., & Hussain, M. M. (2002). Development of a new Bi–Di correlation for solids drying. International Journal of Heat and Mass Transfer, 45(15), 3065-3069.
  • Doymaz, İ. (2010). Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. Food and bioproducts processing, 88(2-3), 124-132.
  • Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer, 53, 25-35.
  • Doymaz, İ. (2020). Impact of citric acid on the drying characteristics of kiwifruit slices. Acta Scientiarum. Technology, 42.
  • Doymaz, İ., & Bilici, B. (2014). Influence of citric acid pretreatment on drying of peach slices. International Journal of Food Engineering, 10(4), 829-837.
  • Doymaz, İ., & Sahin, M. (2016). Effect of temperature and pre-treatment on drying and rehydration characteristics of broccoli slices. Journal of Food Measurement and Characterization, 10, 364-373.
  • Doymaz, İ., Demir, H., & Yildirim, A. (2015). Drying of quince slices: effect of pretreatments on drying and rehydration characteristics. Chemical Engineering Communications, 202(10), 1271-1279.
  • Erbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5), 441-464.
  • Ermiş, S., & Yanmaz, R. Türkiye'nin Farklı Ekolojik Koşullarında Yetiştirilen Çekirdek Kabağı Hatlarının (Cucurbita pepo L.) Kimyasal Bileşimi ve Besin Değerinin Karşılaştırılması. Türk Tarım ve Doğa Bilimleri Dergisi, 9(2): 413–423.
  • Erol, N. T., Incedayi, B., Sari, F., & Copur, O. U. (2023). A comparative study of electrical and conventional pre-treatments for quality assessment of hot air dried green bell pepper. Food Science and Technology International, 10820132221132903.
  • Fahimi, R., Askari, B., Ghareh Beglo, P., Farzbood, P., & Mokhtari, F. (2014). Evaluation of the best kinetic model in thin layer drying of zucchini using convective hot air dryer. Journal of Food Technology and Nutrition, 11(2), 63-72.
  • Fijalkowska, A., Nowacka, M., Wiktor, A., Sledz, M., & Witrowa‐Rajchert, D. (2016). Ultrasound as a pretreatment method to improve drying kinetics and sensory properties of dried apple. Journal of Food Process Engineering, 39(3), 256-265.
  • Gamboa-Santos, J., Montilla, A., Soria, A. C., Cárcel, J. A., García-Pérez, J. V., & Villamiel, M. (2014). Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection. Food Chemistry, 161, 40-46.
  • Hasan, M. U., Malik, A. U., Ali, S., Imtiaz, A., Munir, A., Amjad, W., & Anwar, R. (2019). Modern drying techniques in fruits and vegetables to overcome postharvest losses: A review. Journal of Food Processing and Preservation, 43(12), e14280.
  • Henderson, S. M. (1961). Grain drying theory, I. Temperature effect on drying coefficient. J. Agr. Eng. Res., 6(3), 169-173.
  • Hiranvarachat, B., Devahastin, S., & Chiewchan, N. (2011). Effects of acid pretreatments on some physicochemical properties of carrot undergoing hot air drying. Food and bioproducts processing, 89(2), 116-127.
  • Huang, D., Yang, P., Tang, X., Luo, L., & Sunden, B. (2021). Application of infrared radiation in the drying of food products. Trends in Food Science & Technology, 110, 765-777.
  • Iswaldi, I., Gómez-Caravaca, A. M., Lozano-Sánchez, J., Arráez-Román, D., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2013). Profiling of phenolic and other polar compounds in zucchini (Cucurbita pepo L.) by reverse-phase high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Research International, 50(1), 77-84.
  • Jarahizadeh, H., & Taghian Dinani, S. (2019). Influence of applied time and power of ultrasonic pretreatment on convective drying of potato slices. Food science and biotechnology, 28(2), 365-376.
  • Karaye, I. U., Hayatu, M., Mustapha, Y., & Sanı, L. A. (2021). Nutritional and anti-nutritional properties of the seeds of six selected Nigerian Cucurbit Germplasm. Journal of Plant Development, 28, 139-150.
  • Kumar, D., Prasad, S., & Murthy, G. S. (2014). Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology. Journal of Food Science and Technology, 51, 221-232.
  • Kurtulmuş, F., Polat, A., & İzli, N. (2020). Yapay Sinir Ağları Kullanarak Kayısının Farklı Kurutma Yöntemleriyle Kurutulmasında Kuruma Hızı Ve Nem İçeriği Parametrelerinin Modellenmesi. ÇOMÜ Ziraat Fakültesi Dergisi, 8(2), 261-269.
  • Kutlu, N., & Isci, A. (2017). Drying characteristics of zucchini and empirical modeling of its drying process. International Journal of Food Studies, 6(2).
  • Lewis, W. K. (1921). The rate of drying of solid materials. Industrial & Engineering Chemistry, 13(5), 427-432.
  • Liu, X., Hou, H., & Chen, J. (2013). Applicability of moisture transfer parameters estimated by correlation between Biot number and lag factor (Bi–G correlation) for convective drying of eggplant slices. Heat and mass transfer, 49, 1595-1601.
  • McGhie, T. K., & Ainge, G. D. (2002). Color in fruit of the genus Actinidia: carotenoid and chlorophyll compositions. Journal of Agricultural and Food Chemistry, 50(1), 117-121.
  • Miano, A. C., Ibarz, A., & Augusto, P. E. D. (2016). Mechanisms for improving mass transfer in food with ultrasound technology: Describing the phenomena in two model cases. Ultrasonics Sonochemistry, 29, 413-419.
  • Murthy, T. P. K., & Manohar, B. (2014). Hot air drying characteristics of mango ginger: Prediction of drying kinetics by mathematical modeling and artificial neural network. Journal of Food Science and Technology, 51, 3712-3721.
  • Naderinezhad, S., Etesami, N., Poormalek Najafabady, A., & Ghasemi Falavarjani, M. (2016). Mathematical modeling of drying of the potato slices in a forced convective dryer based on important parameters. Food Science & Nutrition, 4(1), 110-118.
  • Neves, F. I., Silva, C. L., & Vieira, M. C. (2019). Combined pre-treatments effects on zucchini (Cucurbita pepo L.) squash microbial load reduction. International journal of food microbiology, 305, 108257.
  • Nowacka, M., Dadan, M., Janowicz, M., Wiktor, A., Witrowa‐Rajchert, D., Mandal, R., ... & Janiszewska‐Turak, E. (2021). Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Comprehensive Reviews in Food Science and Food Safety, 20(5), 5097-5144.
  • Oladejo, A. O., Ekpene, M. A. M., Onwude, D. I., Assian, U. E., & Nkem, O. M. (2021). Effects of ultrasound pretreatments on the drying kinetics of yellow cassava during convective hot air drying. Journal of Food Processing and Preservation, 45(3), e15251.
  • Oladejo, A. O., Nkem, O. M., Alonge, A. F., Akpan, M. G., Etti, C. J., Okoko, J. U., & Etuk, N. N. (2023). Influence of ultrasound-pretreated convective drying of Roselle (Hibiscus sabdariffa L) leaves on its drying kinetics and nutritional quality. Scientific African, 20, e01704.
  • Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N., & Abdan, K. (2016). Modelling the convective drying process of pumpkin (Cucurbita moschata) using an artificial neural network. International food research journal, 23, S237.
  • Onwude, D. I., Hashim, N., Janius, R., Abdan, K., Chen, G., & Oladejo, A. O. (2017). Non-thermal hybrid drying of fruits and vegetables: A review of current technologies. Innovative Food Science & Emerging Technologies, 43, 223-238.
  • Page, G. E. (1949). Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin layers. Purdue University.
  • Paniwnyk, L. (2016). Application of Ultrasound to Aid Food Processing. In Food Processing Technologies (pp. 221-246). CRC Press.
  • Patidar, A., Vishwakarma, S., & Meena, D. (2021). Traditional and recent development of pretreatment and drying process of grapes during raisin production: A review of novel pretreatment and drying methods of grapes. Food Frontiers, 2(1), 46-61.
  • Priecina, L., Karklina, D., & Kince, T. (2018). The impact of steam-blanching and dehydration on phenolic, organic acid composition, and total carotenoids in celery roots. Innovative Food Science & Emerging Technologies, 49, 192-201.
  • Pu, Y.-Y., & Sun, D.-W. (2017). Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution. Biosystems Engineering, 156, 108-119.
  • Rajoriya, D., Shewale, S. R., & Hebbar, H. U. (2019). Refractance window drying of apple slices: Mass transfer phenomena and quality parameters. Food and Bioprocess Technology, 12, 1646-1658.
  • Rani, P., & Tripathy, P. P. (2019). Effect of ultrasound and chemical pretreatment on drying characteristics and quality attributes of hot air dried pineapple slices. Journal of food science and technology, 56, 4911-4924.
  • Rasooli Sharabiani, V., Kaveh, M., Abdi, R., Szymanek, M., & Tanaś, W. (2021). Estimation of moisture ratio for apple drying by convective and microwave methods using artificial neural network modeling. Scientific reports, 11(1), 1-12.
  • Ratnam, N., Naijibullah, M., & Ibrahim, M. (2017). A review on Cucurbita pepo. Int J Pharm Phytochem Res, 9, 1190-1194.
  • Ren, F., Perussello, C., Zhang, Z., Kerry, J. P., & Tiwari, B. K. (2018). Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions. Lwt, 87, 102-111.
  • Şahin, U., & Öztürk, H. K. (2018). Comparison between artificial neural network model and mathematical models for drying kinetics of osmotically dehydrated and fresh figs under open sun drying. Journal of Food Process Engineering, 41(5), e12804.
  • Santos, N. C., Almeida, R. L. J., da Silva, G. M., Monteiro, S. S., & Andre, A. M. M. (2020). Effect of ultrasound pre-treatment on the kinetics and thermodynamic properties of guava slices drying process. Innovative Food Science & Emerging Technologies, 66, 102507.
  • Santosh, D., & Maitra, S. (2021). Estimation of irrigation water requirement of Zucchini squash (Cucurbita pepo L.) under protected cultivation structures and in open field conditions. Ind. J. Nat. Sci, 12(69), 37380-373385.
  • Sarkar, T., Salauddin, M., Hazra, S. K., Choudhury, T., & Chakraborty, R. (2021). Comparative approach of artificial neural network and thin layer modelling for drying kinetics and optimization of rehydration ratio for bael (Aegle marmelos (L) correa) powder production. Economic Computation & Economic Cybernetics Studies & Research, 55(1).
  • Seerangurayar, T., Al-Ismaili, A. M., Jeewantha, L. J., & Al-Habsi, N. A. (2019). Effect of solar drying methods on color kinetics and texture of dates. Food and Bioproducts Processing, 116, 227-239.
  • Soydan, M., & Doymaz, İ. (2021). An experimental study on thin-layer drying drying characteristics of apple slices. Lat. Am. Appl. Res, 51(2), 119-126.
  • Sruthi, N., Premjit, Y., Pandiselvam, R., Kothakota, A., & Ramesh, S. (2021). An overview of conventional and emerging techniques of roasting: Effect on food bioactive signatures. Food Chemistry, 348, 129088.
  • Sun, Q., Zhang, M., & Mujumdar, A. S. (2019). Recent developments of artificial intelligence in drying of fresh food: A review. Critical Reviews in Food Science and Nutrition, 59(14), 2258-2275.
  • Tao, Y., & Sun, D.-W. (2015). Enhancement of food processes by ultrasound: a review. Critical Reviews in Food Science and Nutrition, 55(4), 570-594.
  • Tavakolipour, H., Mokhtarian, M., & Kalbasi‐Ashtari, A. (2014). Intelligent monitoring of zucchini drying process based on fuzzy expert engine and ANN. Journal of Food Process Engineering, 37(5), 474-481.
  • Tepe, F. B. (2022). Impact of pretreatments and hybrid microwave assisting on drying characteristics and bioactive properties of apple slices. Journal of Food Processing and Preservation, 46(10), e17067.
  • Tepe, F. B., Tepe, T. K., & Ekinci, A. (2022). Impact of air temperature on drying characteristics and some bioactive properties of kiwi fruit slices. Chemical Industry & Chemical Engineering Quarterly. 28(2), 151-159.
  • Tepe, T. K., & Kadakal, C. (2022). Determination of drying characteristics, rehydration properties, and shrinkage ratio of convective dried melon slice with some pretreatments. Journal of Food Processing and Preservation, 46(6), e16544.
  • Torki-Harchegani, M., Ghanbarian, D., & Sadeghi, M. (2015). Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods. Heat and mass transfer, 51, 1121-1129.
  • Tunckal, C., & Doymaz, İ. (2020). Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy, 150, 918-923.
  • Verdejo-Lucas, S., & Talavera, M. (2019). Root-knot nematodes on zucchini (Cucurbita pepo subsp. pepo): Pathogenicity and management. Crop protection, 126, 104943.
  • Wang, H. O., Fu, Q. Q., Chen, S. J., Hu, Z. C., & Xie, H. X. (2018). Effect of hot- water blanching pretreatment on drying characteristics and product qualities for the novel integrated freeze-drying of apple slices. Journal of Food Quality, 2018, 1-12.
  • Wang, H., Fang, X.-M., Sutar, P. P., Meng, J.-S., Wang, J., Yu, X.-L., & Xiao, H.-W. (2021). Effects of vacuum-steam pulsed blanching on drying kinetics, colour, phytochemical contents, antioxidant capacity of carrot and the mechanism of carrot quality changes revealed by texture, microstructure and ultrastructure. Food Chemistry, 338, 127799.
  • Wang, J., Xiao, H. W., Ye, J. H., Wang, J., & Raghavan, V. (2019). Ultrasound pretreatment to enhance drying kinetics of kiwifruit (Actinidia deliciosa) slices: pros and cons. Food and bioprocess technology, 12, 865-876.
  • Yildirim, E., Ekinci, M., Sahin, U., Ors, S., Turan, M., Demir, I., Dursun, A., & Kotan, R. (2021). Improved water productivity in summer squash under water deficit with PGPR and synthetic methyl amine applications. Rhizosphere, 20, 100446.
  • Yıldız, A. K., Polatcı, H., & Uçun, H. (2015). Farklı Kurutma Şartlarında Muz (Musa cavendishii) Meyvesinin Kurutulması ve Kurutma Kinetiğinin Yapay Sinir Ağları ile Modellenmesi. Tarım Makinaları Bilimi Dergisi, 11(2), 173-178.
  • Yoo, E., Haile, M., Ko, H.-C., Choi, Y.-M., Cho, G.-T., Woo, H.-J., Wang, X., Sung, P., Lee, J., & Lee, J. (2023). Development of SNP markers for Cucurbita species discrimination. Scientia Horticulturae, 318, 112089.
  • Zang, Z., Huang, X., He, C., Zhang, Q., Jiang, C., & Wan, F. (2023). Improving Drying Characteristics and Physicochemical Quality of Angelica sinensis by Novel Tray Rotation Microwave Vacuum Drying. Foods, 12(6), 1202.
  • Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi society of agricultural sciences, 14(1), 41-47.
  • Zhu, Y., Pan, Z., McHugh, T. H., & Barrett, D. M. (2010). Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating. Journal of food engineering, 97(1), 8-16.

Kabak Dilimlerinin Konvektif Kurutulması; Ön İşlemlerin Kurutma Karakteristikleri ve Renk Özellikleri Üzerine Etkisi, Yapay Sinir Ağı Modellemesi ve İnce Tabaka Modellemesinin Değerlendirilmesi

Yıl 2024, Cilt: 14 Sayı: 1, 168 - 193, 15.03.2024
https://doi.org/10.31466/kfbd.1373651

Öz

Bu çalışmada, sitrik asit, sıcak suda haşlama ve ultrason ön işlemlerinin kabak dilimlerinin kurutulması, renk özelliklerine etkisi ile yapay sinir ağı (YSA) ve ince tabaka modellemesinin karşılaştırılması araştırılmıştır. Uygulanan ön işlemler kuruma hızını arttırmış ve kuruma süresini azaltmıştır. Ultrason ön işleminin en etkili ön işlem olduğu görülmüş ve kuruma süresindeki azalma oranı 40% olarak tespit edilmiştir. Ayrıca, kütle transferi ve nem difüzyonu olayları, kurutma hızının artışına bağlı olarak ön işlemlerden olumlu yönde etkilenmiştir. Ultrason ön işlemi ile en yüksek kütle transfer katsayısı (hm), Dincer ve Dost modeline göre nem difüzyonu (D) ve Crank denklemi ile hesaplanan efektif nem difüzyonu değerlerine (Deff) ulaşılmıştır. Öte yandan, Midilli ve Küçük, Parabolik ve Page ince tabaka modelleri arasında en iyi tahminleri vermiştir. Bununla birlikte, YSA modellemesi, daha yüksek determinasyon katsayısı (R2) ve daha düşük kök ortalama karesel hata (KOKH) değerleri nedeniyle ince tabaka modellerine kıyasla daha iyi performans göstermiştir. Kabak dilimlerinin renk özellikleri kurutma işlemlerinden etkilenmiştir. Genel olarak, kabak dilimlerinin kırmızılığı ve sarılığı artmış, ancak açıklık değeri istatistiksel olarak anlamlılık göstermemiştir. Ayrıca, sitrik asit ön işlemi en düşük toplam renk farkını (∆E) vermiştir.

Kaynakça

  • Abbaspour-Gilandeh, Y., Kaveh, M., Fatemi, H., Khalife, E., Witrowa-Rajchert, D., & Nowacka, M. (2021). Effect of Pretreatments on Convective and Infrared Drying Kinetics, Energy Consumption and Quality of Terebinth. Applied Sciences, 11(16), 7672.
  • Adnan, M., Gul, S., Batool, S., Fatima, B., Rehman, A., Yaqoob, S., Shabir, H., Yousaf, T., Mussarat, S., & Ali, N. (2017). A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. The Journal of Phytopharmacology, 6(2), 133-139.
  • Aghbashlo, M., Hosseinpour, S., & Mujumdar, A. S. (2015). Application of artificial neural networks (ANNs) in drying technology: a comprehensive review. Drying technology, 33(12), 1397-1462.
  • Agrawal, S. G., & Methekar, R. N. (2017). Mathematical model for heat and mass transfer during convective drying of pumpkin. Food and Bioproducts Processing, 101, 68-73.
  • Akar, G., & Barutçu Mazı, I. (2019). Color change, ascorbic acid degradation kinetics, and rehydration behavior of kiwifruit as affected by different drying methods. Journal of food process engineering, 42(3), e13011.
  • Anonymous. (2023). Production of vegetables, 2022, 2023. Turkish Statistical Institute Retrieved 22.09.2023.
  • Arı, A., & Berberler, M. E. (2017). Yapay sinir ağları ile tahmin ve sınıflandırma problemlerinin çözümü için arayüz tasarımı. Acta Infologica, 1(2), 55-73.
  • Bassey, E. J., Cheng, J.-H., & Sun, D.-W. (2021). Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology, 112, 137-148.
  • Beck, S. M., Sabarez, H., Gaukel, V., & Knoerzer, K. (2014). Enhancement of convective drying by application of airborne ultrasound–a response surface approach. Ultrasonics Sonochemistry, 21(6), 2144-2150.
  • Beigi, M. (2016). Influence of drying air parameters on mass transfer characteristics of apple slices. Heat and Mass Transfer, 52(10), 2213-2221.
  • Beigi, M. (2017). Mass transfer parameters of celeriac during vacuum drying. Heat and Mass Transfer, 53(4), 1327-1334.
  • Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. (2016). Impact of Sonication on Shelf Life, Sensory, and Nutritional Quality of Food. In Food Processing Technologies (pp. 247-264). CRC Press.
  • Bezerra, C. V., da Silva, L. H. M., Corrêa, D. F., & Rodrigues, A. M. (2015). A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel. International Journal of Heat and Mass Transfer, 85, 750-755.
  • Bhagya Raj, G., & Dash, K. K. (2022). Comprehensive study on applications of artificial neural network in food process modeling. Critical Reviews in Food Science and Nutrition, 62(10), 2756-2783.
  • Bi, J., Yang, A., Liu, X., Wu, X., Chen, Q., Wang, Q., ... & Wang, X. (2015). Effects of pretreatments on explosion puffing drying kinetics of apple chips. LWT-Food Science and Technology, 60(2), 1136-1142.
  • Bozkir, H., & Ergün, A. R. (2020). Effect of sonication and osmotic dehydration applications on the hot air drying kinetics and quality of persimmon. Lwt, 131, 109704.
  • Brandão, S. C., Diniz, G. F., da Silva, J. H., da Silva, E. S., de Medeiros, R. A., & Azoubel, P. M. (2022). Ultrasound-Assisted Vacuum Drying of Melon: Influence on Kinetics, Water Activity and Color. In Melon Breeding and Genetics: Developments in Food Quality & Safety (pp. 127-136). ACS Publications.
  • Carvajal, F., Martinez, C., Jamilena, M., & Garrido, D. (2011). Differential response of zucchini varieties to low storage temperature. Scientia Horticulturae, 130(1), 90-96.
  • Chayjan, R. A., Dibagar, N., & Alaei, B. (2017). Drying characteristics of zucchini slices under periodic infrared-microwave vacuum conditions. Heat and Mass Transfer, 53, 3473-3485.
  • Chemat, F., & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813-835.
  • Chen, X.D., Putranto, A., 2013. Modelling Drying Processes: A Reaction Engineering Approach. Cambridge University, New York.
  • Chhe, C., Imaizumi, T., Tanaka, F., & Uchino, T. (2018). Effects of hot-water blanching on the biological and physicochemical properties of sweet potato slices. Engineering in agriculture, environment and food, 11(1), 19-24.
  • Chokphoemphun, S., Hongkong, S., & Chokphoemphun, S. (2023). Evaluation of drying behavior and characteristics of the potato slices in multi–stage convective cabinet dryer: application of artificial neural network. Information Processing in Agriculture.
  • Cömert, E. D., Mogol, B. A., & Gökmen, V. (2020). Relationship between color and antioxidant capacity of fruits and vegetables. Current Research in Food Science, 2, 1-10.
  • Crank J (1975) The mathematics of diffusion. Clarendon Press
  • Decker, D. S. (1988). Origin (s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Economic Botany, 42, 4-15.
  • Demiray, E. (2019). Drying characteristics and kinetics of lovastatin degradation of oyster mushroom (Pleurotus Ostreatus) slices. Latin American Applied Research-An international journal, 49(4), 269-274.
  • Demiray, E., Seker, A., & Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat and Mass Transfer, 53, 1817-1827.
  • Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., ... & Xiao, H. W. (2019). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Critical reviews in food science and nutrition, 59(9), 1408-1432.
  • Dincer, I. (1998). Moisture transfer analysis during drying of slab woods. Heat and mass transfer, 34(4), 317-320.
  • Dincer, I., & Dost, S. (1995). An analytical model for moisture diffusion in solid objects during drying. Drying Technology, 13(1-2), 425-435.
  • Dincer, I., & Dost, S. (1996). A modelling study for moisture diffusivities and moisture transfer coefficients in drying of solid objects. International Journal of Energy Research, 20(6), 531-539.
  • Dincer, I., & Hussain, M. M. (2002). Development of a new Bi–Di correlation for solids drying. International Journal of Heat and Mass Transfer, 45(15), 3065-3069.
  • Doymaz, İ. (2010). Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. Food and bioproducts processing, 88(2-3), 124-132.
  • Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer, 53, 25-35.
  • Doymaz, İ. (2020). Impact of citric acid on the drying characteristics of kiwifruit slices. Acta Scientiarum. Technology, 42.
  • Doymaz, İ., & Bilici, B. (2014). Influence of citric acid pretreatment on drying of peach slices. International Journal of Food Engineering, 10(4), 829-837.
  • Doymaz, İ., & Sahin, M. (2016). Effect of temperature and pre-treatment on drying and rehydration characteristics of broccoli slices. Journal of Food Measurement and Characterization, 10, 364-373.
  • Doymaz, İ., Demir, H., & Yildirim, A. (2015). Drying of quince slices: effect of pretreatments on drying and rehydration characteristics. Chemical Engineering Communications, 202(10), 1271-1279.
  • Erbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5), 441-464.
  • Ermiş, S., & Yanmaz, R. Türkiye'nin Farklı Ekolojik Koşullarında Yetiştirilen Çekirdek Kabağı Hatlarının (Cucurbita pepo L.) Kimyasal Bileşimi ve Besin Değerinin Karşılaştırılması. Türk Tarım ve Doğa Bilimleri Dergisi, 9(2): 413–423.
  • Erol, N. T., Incedayi, B., Sari, F., & Copur, O. U. (2023). A comparative study of electrical and conventional pre-treatments for quality assessment of hot air dried green bell pepper. Food Science and Technology International, 10820132221132903.
  • Fahimi, R., Askari, B., Ghareh Beglo, P., Farzbood, P., & Mokhtari, F. (2014). Evaluation of the best kinetic model in thin layer drying of zucchini using convective hot air dryer. Journal of Food Technology and Nutrition, 11(2), 63-72.
  • Fijalkowska, A., Nowacka, M., Wiktor, A., Sledz, M., & Witrowa‐Rajchert, D. (2016). Ultrasound as a pretreatment method to improve drying kinetics and sensory properties of dried apple. Journal of Food Process Engineering, 39(3), 256-265.
  • Gamboa-Santos, J., Montilla, A., Soria, A. C., Cárcel, J. A., García-Pérez, J. V., & Villamiel, M. (2014). Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection. Food Chemistry, 161, 40-46.
  • Hasan, M. U., Malik, A. U., Ali, S., Imtiaz, A., Munir, A., Amjad, W., & Anwar, R. (2019). Modern drying techniques in fruits and vegetables to overcome postharvest losses: A review. Journal of Food Processing and Preservation, 43(12), e14280.
  • Henderson, S. M. (1961). Grain drying theory, I. Temperature effect on drying coefficient. J. Agr. Eng. Res., 6(3), 169-173.
  • Hiranvarachat, B., Devahastin, S., & Chiewchan, N. (2011). Effects of acid pretreatments on some physicochemical properties of carrot undergoing hot air drying. Food and bioproducts processing, 89(2), 116-127.
  • Huang, D., Yang, P., Tang, X., Luo, L., & Sunden, B. (2021). Application of infrared radiation in the drying of food products. Trends in Food Science & Technology, 110, 765-777.
  • Iswaldi, I., Gómez-Caravaca, A. M., Lozano-Sánchez, J., Arráez-Román, D., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2013). Profiling of phenolic and other polar compounds in zucchini (Cucurbita pepo L.) by reverse-phase high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Research International, 50(1), 77-84.
  • Jarahizadeh, H., & Taghian Dinani, S. (2019). Influence of applied time and power of ultrasonic pretreatment on convective drying of potato slices. Food science and biotechnology, 28(2), 365-376.
  • Karaye, I. U., Hayatu, M., Mustapha, Y., & Sanı, L. A. (2021). Nutritional and anti-nutritional properties of the seeds of six selected Nigerian Cucurbit Germplasm. Journal of Plant Development, 28, 139-150.
  • Kumar, D., Prasad, S., & Murthy, G. S. (2014). Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology. Journal of Food Science and Technology, 51, 221-232.
  • Kurtulmuş, F., Polat, A., & İzli, N. (2020). Yapay Sinir Ağları Kullanarak Kayısının Farklı Kurutma Yöntemleriyle Kurutulmasında Kuruma Hızı Ve Nem İçeriği Parametrelerinin Modellenmesi. ÇOMÜ Ziraat Fakültesi Dergisi, 8(2), 261-269.
  • Kutlu, N., & Isci, A. (2017). Drying characteristics of zucchini and empirical modeling of its drying process. International Journal of Food Studies, 6(2).
  • Lewis, W. K. (1921). The rate of drying of solid materials. Industrial & Engineering Chemistry, 13(5), 427-432.
  • Liu, X., Hou, H., & Chen, J. (2013). Applicability of moisture transfer parameters estimated by correlation between Biot number and lag factor (Bi–G correlation) for convective drying of eggplant slices. Heat and mass transfer, 49, 1595-1601.
  • McGhie, T. K., & Ainge, G. D. (2002). Color in fruit of the genus Actinidia: carotenoid and chlorophyll compositions. Journal of Agricultural and Food Chemistry, 50(1), 117-121.
  • Miano, A. C., Ibarz, A., & Augusto, P. E. D. (2016). Mechanisms for improving mass transfer in food with ultrasound technology: Describing the phenomena in two model cases. Ultrasonics Sonochemistry, 29, 413-419.
  • Murthy, T. P. K., & Manohar, B. (2014). Hot air drying characteristics of mango ginger: Prediction of drying kinetics by mathematical modeling and artificial neural network. Journal of Food Science and Technology, 51, 3712-3721.
  • Naderinezhad, S., Etesami, N., Poormalek Najafabady, A., & Ghasemi Falavarjani, M. (2016). Mathematical modeling of drying of the potato slices in a forced convective dryer based on important parameters. Food Science & Nutrition, 4(1), 110-118.
  • Neves, F. I., Silva, C. L., & Vieira, M. C. (2019). Combined pre-treatments effects on zucchini (Cucurbita pepo L.) squash microbial load reduction. International journal of food microbiology, 305, 108257.
  • Nowacka, M., Dadan, M., Janowicz, M., Wiktor, A., Witrowa‐Rajchert, D., Mandal, R., ... & Janiszewska‐Turak, E. (2021). Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Comprehensive Reviews in Food Science and Food Safety, 20(5), 5097-5144.
  • Oladejo, A. O., Ekpene, M. A. M., Onwude, D. I., Assian, U. E., & Nkem, O. M. (2021). Effects of ultrasound pretreatments on the drying kinetics of yellow cassava during convective hot air drying. Journal of Food Processing and Preservation, 45(3), e15251.
  • Oladejo, A. O., Nkem, O. M., Alonge, A. F., Akpan, M. G., Etti, C. J., Okoko, J. U., & Etuk, N. N. (2023). Influence of ultrasound-pretreated convective drying of Roselle (Hibiscus sabdariffa L) leaves on its drying kinetics and nutritional quality. Scientific African, 20, e01704.
  • Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N., & Abdan, K. (2016). Modelling the convective drying process of pumpkin (Cucurbita moschata) using an artificial neural network. International food research journal, 23, S237.
  • Onwude, D. I., Hashim, N., Janius, R., Abdan, K., Chen, G., & Oladejo, A. O. (2017). Non-thermal hybrid drying of fruits and vegetables: A review of current technologies. Innovative Food Science & Emerging Technologies, 43, 223-238.
  • Page, G. E. (1949). Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin layers. Purdue University.
  • Paniwnyk, L. (2016). Application of Ultrasound to Aid Food Processing. In Food Processing Technologies (pp. 221-246). CRC Press.
  • Patidar, A., Vishwakarma, S., & Meena, D. (2021). Traditional and recent development of pretreatment and drying process of grapes during raisin production: A review of novel pretreatment and drying methods of grapes. Food Frontiers, 2(1), 46-61.
  • Priecina, L., Karklina, D., & Kince, T. (2018). The impact of steam-blanching and dehydration on phenolic, organic acid composition, and total carotenoids in celery roots. Innovative Food Science & Emerging Technologies, 49, 192-201.
  • Pu, Y.-Y., & Sun, D.-W. (2017). Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution. Biosystems Engineering, 156, 108-119.
  • Rajoriya, D., Shewale, S. R., & Hebbar, H. U. (2019). Refractance window drying of apple slices: Mass transfer phenomena and quality parameters. Food and Bioprocess Technology, 12, 1646-1658.
  • Rani, P., & Tripathy, P. P. (2019). Effect of ultrasound and chemical pretreatment on drying characteristics and quality attributes of hot air dried pineapple slices. Journal of food science and technology, 56, 4911-4924.
  • Rasooli Sharabiani, V., Kaveh, M., Abdi, R., Szymanek, M., & Tanaś, W. (2021). Estimation of moisture ratio for apple drying by convective and microwave methods using artificial neural network modeling. Scientific reports, 11(1), 1-12.
  • Ratnam, N., Naijibullah, M., & Ibrahim, M. (2017). A review on Cucurbita pepo. Int J Pharm Phytochem Res, 9, 1190-1194.
  • Ren, F., Perussello, C., Zhang, Z., Kerry, J. P., & Tiwari, B. K. (2018). Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions. Lwt, 87, 102-111.
  • Şahin, U., & Öztürk, H. K. (2018). Comparison between artificial neural network model and mathematical models for drying kinetics of osmotically dehydrated and fresh figs under open sun drying. Journal of Food Process Engineering, 41(5), e12804.
  • Santos, N. C., Almeida, R. L. J., da Silva, G. M., Monteiro, S. S., & Andre, A. M. M. (2020). Effect of ultrasound pre-treatment on the kinetics and thermodynamic properties of guava slices drying process. Innovative Food Science & Emerging Technologies, 66, 102507.
  • Santosh, D., & Maitra, S. (2021). Estimation of irrigation water requirement of Zucchini squash (Cucurbita pepo L.) under protected cultivation structures and in open field conditions. Ind. J. Nat. Sci, 12(69), 37380-373385.
  • Sarkar, T., Salauddin, M., Hazra, S. K., Choudhury, T., & Chakraborty, R. (2021). Comparative approach of artificial neural network and thin layer modelling for drying kinetics and optimization of rehydration ratio for bael (Aegle marmelos (L) correa) powder production. Economic Computation & Economic Cybernetics Studies & Research, 55(1).
  • Seerangurayar, T., Al-Ismaili, A. M., Jeewantha, L. J., & Al-Habsi, N. A. (2019). Effect of solar drying methods on color kinetics and texture of dates. Food and Bioproducts Processing, 116, 227-239.
  • Soydan, M., & Doymaz, İ. (2021). An experimental study on thin-layer drying drying characteristics of apple slices. Lat. Am. Appl. Res, 51(2), 119-126.
  • Sruthi, N., Premjit, Y., Pandiselvam, R., Kothakota, A., & Ramesh, S. (2021). An overview of conventional and emerging techniques of roasting: Effect on food bioactive signatures. Food Chemistry, 348, 129088.
  • Sun, Q., Zhang, M., & Mujumdar, A. S. (2019). Recent developments of artificial intelligence in drying of fresh food: A review. Critical Reviews in Food Science and Nutrition, 59(14), 2258-2275.
  • Tao, Y., & Sun, D.-W. (2015). Enhancement of food processes by ultrasound: a review. Critical Reviews in Food Science and Nutrition, 55(4), 570-594.
  • Tavakolipour, H., Mokhtarian, M., & Kalbasi‐Ashtari, A. (2014). Intelligent monitoring of zucchini drying process based on fuzzy expert engine and ANN. Journal of Food Process Engineering, 37(5), 474-481.
  • Tepe, F. B. (2022). Impact of pretreatments and hybrid microwave assisting on drying characteristics and bioactive properties of apple slices. Journal of Food Processing and Preservation, 46(10), e17067.
  • Tepe, F. B., Tepe, T. K., & Ekinci, A. (2022). Impact of air temperature on drying characteristics and some bioactive properties of kiwi fruit slices. Chemical Industry & Chemical Engineering Quarterly. 28(2), 151-159.
  • Tepe, T. K., & Kadakal, C. (2022). Determination of drying characteristics, rehydration properties, and shrinkage ratio of convective dried melon slice with some pretreatments. Journal of Food Processing and Preservation, 46(6), e16544.
  • Torki-Harchegani, M., Ghanbarian, D., & Sadeghi, M. (2015). Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods. Heat and mass transfer, 51, 1121-1129.
  • Tunckal, C., & Doymaz, İ. (2020). Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy, 150, 918-923.
  • Verdejo-Lucas, S., & Talavera, M. (2019). Root-knot nematodes on zucchini (Cucurbita pepo subsp. pepo): Pathogenicity and management. Crop protection, 126, 104943.
  • Wang, H. O., Fu, Q. Q., Chen, S. J., Hu, Z. C., & Xie, H. X. (2018). Effect of hot- water blanching pretreatment on drying characteristics and product qualities for the novel integrated freeze-drying of apple slices. Journal of Food Quality, 2018, 1-12.
  • Wang, H., Fang, X.-M., Sutar, P. P., Meng, J.-S., Wang, J., Yu, X.-L., & Xiao, H.-W. (2021). Effects of vacuum-steam pulsed blanching on drying kinetics, colour, phytochemical contents, antioxidant capacity of carrot and the mechanism of carrot quality changes revealed by texture, microstructure and ultrastructure. Food Chemistry, 338, 127799.
  • Wang, J., Xiao, H. W., Ye, J. H., Wang, J., & Raghavan, V. (2019). Ultrasound pretreatment to enhance drying kinetics of kiwifruit (Actinidia deliciosa) slices: pros and cons. Food and bioprocess technology, 12, 865-876.
  • Yildirim, E., Ekinci, M., Sahin, U., Ors, S., Turan, M., Demir, I., Dursun, A., & Kotan, R. (2021). Improved water productivity in summer squash under water deficit with PGPR and synthetic methyl amine applications. Rhizosphere, 20, 100446.
  • Yıldız, A. K., Polatcı, H., & Uçun, H. (2015). Farklı Kurutma Şartlarında Muz (Musa cavendishii) Meyvesinin Kurutulması ve Kurutma Kinetiğinin Yapay Sinir Ağları ile Modellenmesi. Tarım Makinaları Bilimi Dergisi, 11(2), 173-178.
  • Yoo, E., Haile, M., Ko, H.-C., Choi, Y.-M., Cho, G.-T., Woo, H.-J., Wang, X., Sung, P., Lee, J., & Lee, J. (2023). Development of SNP markers for Cucurbita species discrimination. Scientia Horticulturae, 318, 112089.
  • Zang, Z., Huang, X., He, C., Zhang, Q., Jiang, C., & Wan, F. (2023). Improving Drying Characteristics and Physicochemical Quality of Angelica sinensis by Novel Tray Rotation Microwave Vacuum Drying. Foods, 12(6), 1202.
  • Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi society of agricultural sciences, 14(1), 41-47.
  • Zhu, Y., Pan, Z., McHugh, T. H., & Barrett, D. M. (2010). Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating. Journal of food engineering, 97(1), 8-16.
Toplam 102 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Tolga Kağan Tepe 0000-0003-0484-7295

Negin Azarabadi 0000-0002-3540-3550

Fadime Begüm Tepe 0000-0003-4989-5354

Yayımlanma Tarihi 15 Mart 2024
Gönderilme Tarihi 10 Ekim 2023
Kabul Tarihi 27 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Tepe, T. K., Azarabadi, N., & Tepe, F. B. (2024). Convective Drying of the Zucchini Slices; Impact of Pretreatments on the Drying Characteristics and Color Properties, Evaluation of Artificial Neural Network Modeling and Thin-Layer Modeling. Karadeniz Fen Bilimleri Dergisi, 14(1), 168-193. https://doi.org/10.31466/kfbd.1373651