Araştırma Makalesi
BibTex RIS Kaynak Göster

Pasif ve Aktif Olarak Ok Açılı ve Anhedralli Pal Ucu Şekli Başkalaşan Helikopterin Kontrol Sistemi ile Beraber Eş Zamanlı ve Rassal Yeniden Tasarımı

Yıl 2024, Cilt: 14 Sayı: 2, 902 - 912, 18.06.2024
https://doi.org/10.31466/kfbd.1451000

Öz

Bu araştırma yayınında pal ucundaki ok açısı ve anhedrali uçuş öncesinde pasif, uçuş sırasında ise aktif olarak başkalaşım yeteneğine sahip bir insanlı helikopterin otomatik uçuş kontrolünü sağlayan kontrol sistemi ile biraz önce bahsedilen başkalaşan parametrelerinin başkalaşım mekanizmaları eş zamanlı olarak rassal optimizasyon yöntemi ile yeniden tasarlanmaya çalışılıp en ekonomik bir şekilde otonom uçuşun sağlanması amaçlanmıştır. Bu çalışmada uçuş kontrol sistemi içinde varyans kısıtlı kontrolcüler, spesifik olarak çıkış varyansı kısıtlı kontrolcü kullanılmıştır. Rassal optimizasyon yöntemi olarak SPSA yani eş zamanlı pertürbasyon rassal yaklaştırım kullanılmıştır. Pale ucu geometrisinin ve helikopter otomatik uçuş kontrol sisteminin eş zamanlı tasarımı sonucunda kontrol çabasından oluşan maliyet fonksiyonunda, pasif ve aktif başkalaşımın beraber ele alındığı durumda bu başkalaşım yöntemlerinin tek tek ele alındığı duruma göre çok daha fazla tasarruf sağlanmıştır.

Kaynakça

  • Barbarino, S., Gandhi, F. and Webster, S. D., (2011). Design of extendable chord sections for morphing helicopter rotor blades. Journal of Intelligent Material Systems and Structures, 22(9), 891–905, doi: https://doi.org/10.1177/1045389X11414077.
  • Bailly, J., Ortun, B., Delrieux, Y. and Rochettes, H. M. D., (2017). Recent Advances in Rotor Aerodynamic Optimization, Including Structural Data Update. Journal- American Helicopter Society, American Helicopter Society Inc., 62:022009-1 to 022009-11.
  • Bluman, J. E. and Gandhi, F. S., (2011). Reducing trailing edge flap deflection requirements in primary control with a movable horizontal tail. Journal of the American Helicopter Society, 56(3), doi: https://doi.org/10.4050/JAHS.56.032005.
  • Brocklehurst, A. and Barakos, G. N,. (2013). A review of helicopter rotor blade tip shapes. Progress in Aerospace Sciences, 56, 35-74.
  • Desopper, A., Lafon, P., Philippe, J. J. and Onera, J. P., (1987). Effect of an anhedral sweptback tip on the performance of a helicopter rotor. 13th European Rotorcraft Forum, Arles, France.
  • Droandi, G. and Gibertini, G., (2015). Aerodynamic blade design with multiobjective optimization for a tiltrotor aircraft. Aircraft Engineering and Aerospace Technology, 87(1), 19-29.
  • Fusato D. and Celi R., (2006). Multidisciplinary design optimization for aeromechanics and handling qualities. Journal of Aircraft, 43(1), 241–252, doi: https://doi.org/10.2514/1.7943.
  • Ganguli R., (2002). Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods. Journal of Sound and Vibration, 258(2):327–344, doi: https://doi.org/10.1006/jsvi.2002.5179.
  • Garipova, L. I., Batrakov, A. S., Kusyumov, A. N., Mikhailov, S. A. and Barakos, G., (2016). Aerodynamic and acoustic analysis of helicopter main rotor blade tips in hover. International Journal of numerical methods for heat & fluid flow, 26(7), 2101-2118.
  • He, Y., Fu, M. C., and Marcus, S. I., (2003). Convergence of simultaneous perturbation stochastic approximation for non-differentiable optimization. IEEE Transactions on Aerospace and Electronic Systems, 48(8), 1459-1463.
  • Hodges, D. H., Ho, J. C. and Yu, W., (2008). The effect of taper on section constants for in-plane deformation of an isotropic strip. Journal of Mechanics of Materials and Structures, 3(3), 425-440.
  • Howlett, J (1981) “UH-60 Black Hawk engineering simulation program,” NASA Contractor Report 166309.
  • Imiela, M., (2012). High-fidelity optimization framework for helicopter rotors. Aerospace science and technology, 23, 2-16.
  • Kambampati, S. and Ganguli, R., (2016). Nonrotating beams isospectral to tapered rotating beams. AIAA Journal, 54(2), 750-757, doi: https://doi.org/10.2514/1.J054126.
  • Kang, H., Saberi, H. and Gandhi F., (2010). Dynamic blade shape for improved helicopter rotor performance. Journal of the American Helicopter Society, 55(3), doi: https://doi.org/10.4050/JAHS.55.032008.
  • Marques, P., Maligno, A., Dierks, S., Penev, V. and Bachouche, A., (2013). The Jinn military Unmanned Helicopter Program: Rotor blade tip aerodynamics of the advanced technology demonstrator. International Journal of Unmanned System Engineering, 3(1), 6-15.
  • Oktay, T. and Sultan, C., (2013a). Simultaneous helicopter and control-system design. AIAA Journal of Aircraft, 50(3):911-926, doi: https://doi.org/10.2514/1.C032043.
  • Oktay, T. and Sultan, C., (2013b). Variance-constrained control of maneuvering helicopters with sensor failure. Part G, Journal of Aerospace Engineering, 227(12):1845-1858, doi: https://doi.org/10.1177/0954410012464002.
  • Oktay, T. and Sultan, C., (2013c). Constrained predictive control of helicopters. Aircraft Engineering and Aerospace Technology, 85, 32-47, doi: https://doi.org/10.1108/00022661311294021.
  • Oktay, T. and Sultan, C., (2013d). Modeling and control of a helicopter slung-load system. Aerospace Science and Technology, 29(1), 206-222, doi: https://doi.org/10.1016/j.ast.2013.03.005.
  • Oktay, T. and Sultan, C., (2014). Flight control energy saving via helicopter rotor active morphing,” AIAA Journal of Aircraft, 51(6), 1784-1805, doi: https://doi.org/10.2514/1.C032494.
  • Oktay, T. and Sal, F., (2015). Helicopter control energy reduction using moving horizontal tail. The Scientific World Journal: Aerospace Engineering, doi: 10.1155/2015/523914.
  • Oktay, T. and Sultan, C., (2015). Comfortable helicopter flight via passive/active morphing. IEEE Transactions on Aerospace and Electronic Systems, 51, 2876-2886, doi: 10.1109/TAES.2015.140488.
  • Oktay, T. and Sal, F., (2015). Helicopter control energy reduction using moving horizontal tail. The Scientific World Journal: Aerospace Engineering, doi: 10.1155/2015/523914.
  • Oktay, T. and Sal, F., (2016). Combined passive and active helicopter main rotor morphing for helicopter energy save. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38, 1511-1525.
  • Oktay, T. and Sal, F., (2017). Effect of the simultaneous variation in blade root chord length and blade taper on helicopter flight control effort. International Journal of Aerospace Engineering, 1-9, doi: https://doi.org/10.1155/2017/6325269.
  • Sadegh, P. and Spall, J. C., (1998). Optimal random perturbations for multivariable stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control, 43(10), 1480-1484.
  • Sal, F., (2020). Effects of the actively morphing root chord and taper on helicopter energy. Aircraft Engineering and Aerospace Technology, 92(2), 264-270.
  • Sal, F., (2022). Simultaneous swept anhedral helicopter blade tip shape and control-system design. Aircraft Engineering and Aerospace Technology, 95(1), 101-112. https://doi.org/10.1108/AEAT-02-2022-0050.
  • Sal, F., (2024). Simultaneous Actively Morphing Swept Anhedral Blade Tip Shape and Helicopter Flight Control-System Design. Aircraft Engineering and Aerospace Technology, submitted.
  • Shahmiri, F., Sargolzehi M. and Ashtiani, M. A. S., (2019). Systematic evaluation of the helicopter rotor blades: design variables and interactions. Aircraft Engineering and Aerospace Technology, 92(2), 264-270.
  • Sherry, J., (1953). Helicopter stabilizer. U.S. Patent 2,630,985, March 10.
  • Skelton, R. E. and Lorenzo, M. D., (1985). Space structure control design by variance assignment. Journal of Guidance, Control, and Dynamics, 8(4), 454-462, 1985.
  • Skelton, R. E. and Sultan, C., (1997). “Controllable tensegrity, A new class of smart structures,” SPIE Intl. Symposium on Smart Structures and Materials, San Diego, CA.
  • Stuart, J., (1961). Horizontal tail plane for helicopters. U.S. Patent 2,979,286.
  • Stalewski, W. and Zalewski, W., (2019). Performance improvement of helicopter rotors through blade redesigning. Aircraft Engineering and Aerospace Technology, 91(5), 747-755.
  • Xie., J, Xie, Z., Zhaou, M. and Qiu, J. (2017). Multidisciplinary aerodynamic design of a rotor blade for an optimum rotor speed helicopter. Applied Sciences, 7(6), 1-18.
  • Vu, N. A., Lee J. W. J I S., (2013). Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance. Chinese Journal of Aeronautics, 26(1), 1-8, 2013. doi: https://doi.org/10.1016/j.cja.2012.12.008.

Simultaneous and Stochastic Passively and Actively Morphing Swept Anhedral Helicopter Blade Tip Shape and Control-System Redesign

Yıl 2024, Cilt: 14 Sayı: 2, 902 - 912, 18.06.2024
https://doi.org/10.31466/kfbd.1451000

Öz

In this research article a helicopter having blade tip swept angle and anhedral in both passive before flight and active during flight morphing cases and its automatic flight control system are simultaneously designed with stochastic optimization method and morphing mechanisms of previously mentioned features so that the most economical autonomous flight is satisfied. In this study inside of the flight control system variance constrained controllers specifically output variance constrained controller are used. As a stochastic optimization method SPSA (i.e., simultaneous perturbation stochastic approximation) is used. As a result much more control effort save is obtained when both passive and active morphing approaches are applied with respect the situation that one of these two morphing approaches are applied on simultaneous design of blade tip geometry and helicopter automatic flight control system.

Kaynakça

  • Barbarino, S., Gandhi, F. and Webster, S. D., (2011). Design of extendable chord sections for morphing helicopter rotor blades. Journal of Intelligent Material Systems and Structures, 22(9), 891–905, doi: https://doi.org/10.1177/1045389X11414077.
  • Bailly, J., Ortun, B., Delrieux, Y. and Rochettes, H. M. D., (2017). Recent Advances in Rotor Aerodynamic Optimization, Including Structural Data Update. Journal- American Helicopter Society, American Helicopter Society Inc., 62:022009-1 to 022009-11.
  • Bluman, J. E. and Gandhi, F. S., (2011). Reducing trailing edge flap deflection requirements in primary control with a movable horizontal tail. Journal of the American Helicopter Society, 56(3), doi: https://doi.org/10.4050/JAHS.56.032005.
  • Brocklehurst, A. and Barakos, G. N,. (2013). A review of helicopter rotor blade tip shapes. Progress in Aerospace Sciences, 56, 35-74.
  • Desopper, A., Lafon, P., Philippe, J. J. and Onera, J. P., (1987). Effect of an anhedral sweptback tip on the performance of a helicopter rotor. 13th European Rotorcraft Forum, Arles, France.
  • Droandi, G. and Gibertini, G., (2015). Aerodynamic blade design with multiobjective optimization for a tiltrotor aircraft. Aircraft Engineering and Aerospace Technology, 87(1), 19-29.
  • Fusato D. and Celi R., (2006). Multidisciplinary design optimization for aeromechanics and handling qualities. Journal of Aircraft, 43(1), 241–252, doi: https://doi.org/10.2514/1.7943.
  • Ganguli R., (2002). Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods. Journal of Sound and Vibration, 258(2):327–344, doi: https://doi.org/10.1006/jsvi.2002.5179.
  • Garipova, L. I., Batrakov, A. S., Kusyumov, A. N., Mikhailov, S. A. and Barakos, G., (2016). Aerodynamic and acoustic analysis of helicopter main rotor blade tips in hover. International Journal of numerical methods for heat & fluid flow, 26(7), 2101-2118.
  • He, Y., Fu, M. C., and Marcus, S. I., (2003). Convergence of simultaneous perturbation stochastic approximation for non-differentiable optimization. IEEE Transactions on Aerospace and Electronic Systems, 48(8), 1459-1463.
  • Hodges, D. H., Ho, J. C. and Yu, W., (2008). The effect of taper on section constants for in-plane deformation of an isotropic strip. Journal of Mechanics of Materials and Structures, 3(3), 425-440.
  • Howlett, J (1981) “UH-60 Black Hawk engineering simulation program,” NASA Contractor Report 166309.
  • Imiela, M., (2012). High-fidelity optimization framework for helicopter rotors. Aerospace science and technology, 23, 2-16.
  • Kambampati, S. and Ganguli, R., (2016). Nonrotating beams isospectral to tapered rotating beams. AIAA Journal, 54(2), 750-757, doi: https://doi.org/10.2514/1.J054126.
  • Kang, H., Saberi, H. and Gandhi F., (2010). Dynamic blade shape for improved helicopter rotor performance. Journal of the American Helicopter Society, 55(3), doi: https://doi.org/10.4050/JAHS.55.032008.
  • Marques, P., Maligno, A., Dierks, S., Penev, V. and Bachouche, A., (2013). The Jinn military Unmanned Helicopter Program: Rotor blade tip aerodynamics of the advanced technology demonstrator. International Journal of Unmanned System Engineering, 3(1), 6-15.
  • Oktay, T. and Sultan, C., (2013a). Simultaneous helicopter and control-system design. AIAA Journal of Aircraft, 50(3):911-926, doi: https://doi.org/10.2514/1.C032043.
  • Oktay, T. and Sultan, C., (2013b). Variance-constrained control of maneuvering helicopters with sensor failure. Part G, Journal of Aerospace Engineering, 227(12):1845-1858, doi: https://doi.org/10.1177/0954410012464002.
  • Oktay, T. and Sultan, C., (2013c). Constrained predictive control of helicopters. Aircraft Engineering and Aerospace Technology, 85, 32-47, doi: https://doi.org/10.1108/00022661311294021.
  • Oktay, T. and Sultan, C., (2013d). Modeling and control of a helicopter slung-load system. Aerospace Science and Technology, 29(1), 206-222, doi: https://doi.org/10.1016/j.ast.2013.03.005.
  • Oktay, T. and Sultan, C., (2014). Flight control energy saving via helicopter rotor active morphing,” AIAA Journal of Aircraft, 51(6), 1784-1805, doi: https://doi.org/10.2514/1.C032494.
  • Oktay, T. and Sal, F., (2015). Helicopter control energy reduction using moving horizontal tail. The Scientific World Journal: Aerospace Engineering, doi: 10.1155/2015/523914.
  • Oktay, T. and Sultan, C., (2015). Comfortable helicopter flight via passive/active morphing. IEEE Transactions on Aerospace and Electronic Systems, 51, 2876-2886, doi: 10.1109/TAES.2015.140488.
  • Oktay, T. and Sal, F., (2015). Helicopter control energy reduction using moving horizontal tail. The Scientific World Journal: Aerospace Engineering, doi: 10.1155/2015/523914.
  • Oktay, T. and Sal, F., (2016). Combined passive and active helicopter main rotor morphing for helicopter energy save. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38, 1511-1525.
  • Oktay, T. and Sal, F., (2017). Effect of the simultaneous variation in blade root chord length and blade taper on helicopter flight control effort. International Journal of Aerospace Engineering, 1-9, doi: https://doi.org/10.1155/2017/6325269.
  • Sadegh, P. and Spall, J. C., (1998). Optimal random perturbations for multivariable stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control, 43(10), 1480-1484.
  • Sal, F., (2020). Effects of the actively morphing root chord and taper on helicopter energy. Aircraft Engineering and Aerospace Technology, 92(2), 264-270.
  • Sal, F., (2022). Simultaneous swept anhedral helicopter blade tip shape and control-system design. Aircraft Engineering and Aerospace Technology, 95(1), 101-112. https://doi.org/10.1108/AEAT-02-2022-0050.
  • Sal, F., (2024). Simultaneous Actively Morphing Swept Anhedral Blade Tip Shape and Helicopter Flight Control-System Design. Aircraft Engineering and Aerospace Technology, submitted.
  • Shahmiri, F., Sargolzehi M. and Ashtiani, M. A. S., (2019). Systematic evaluation of the helicopter rotor blades: design variables and interactions. Aircraft Engineering and Aerospace Technology, 92(2), 264-270.
  • Sherry, J., (1953). Helicopter stabilizer. U.S. Patent 2,630,985, March 10.
  • Skelton, R. E. and Lorenzo, M. D., (1985). Space structure control design by variance assignment. Journal of Guidance, Control, and Dynamics, 8(4), 454-462, 1985.
  • Skelton, R. E. and Sultan, C., (1997). “Controllable tensegrity, A new class of smart structures,” SPIE Intl. Symposium on Smart Structures and Materials, San Diego, CA.
  • Stuart, J., (1961). Horizontal tail plane for helicopters. U.S. Patent 2,979,286.
  • Stalewski, W. and Zalewski, W., (2019). Performance improvement of helicopter rotors through blade redesigning. Aircraft Engineering and Aerospace Technology, 91(5), 747-755.
  • Xie., J, Xie, Z., Zhaou, M. and Qiu, J. (2017). Multidisciplinary aerodynamic design of a rotor blade for an optimum rotor speed helicopter. Applied Sciences, 7(6), 1-18.
  • Vu, N. A., Lee J. W. J I S., (2013). Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance. Chinese Journal of Aeronautics, 26(1), 1-8, 2013. doi: https://doi.org/10.1016/j.cja.2012.12.008.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yazılım Mühendisliği (Diğer), Üretim ve Endüstri Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Firat Şal 0000-0003-2412-4131

Yayımlanma Tarihi 18 Haziran 2024
Gönderilme Tarihi 11 Mart 2024
Kabul Tarihi 5 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 2

Kaynak Göster

APA Şal, F. (2024). Pasif ve Aktif Olarak Ok Açılı ve Anhedralli Pal Ucu Şekli Başkalaşan Helikopterin Kontrol Sistemi ile Beraber Eş Zamanlı ve Rassal Yeniden Tasarımı. Karadeniz Fen Bilimleri Dergisi, 14(2), 902-912. https://doi.org/10.31466/kfbd.1451000