Araştırma Makalesi
BibTex RIS Kaynak Göster

Surface Modification of Light Alloys Exposed to Excessive Conditions in the Defense Industry

Yıl 2019, Cilt: 18 Sayı: 36, 67 - 90, 06.11.2019
https://doi.org/10.17134/khosbd.642140

Öz

In this study, ceramic coatings were developed
on AA7075 alloy by plasma electrolytic oxidation (PEO) method in different
solutions prepared by adding aluminum oxide, silicon oxide, wolfram-titanium
carbide and titanium carbide particles. The phase composition of the coatings
was investigated by x-ray diffraction (XRD) method. The surface morphology of
the coatings and the microstructure of the cross-section were investigated by
scanning electron microscopy (SEM). Chemical analyzes of the coatings were made
by means of energy distribution x-ray spectrometry (EDX). The hardness values
of the coatings were measured by microVickers hardness tester. In order to
examine the friction and wear behavior of the coated substrates, dry sliding
wear tests were performed against 100Cr6 steel and alumina balls. After the
wear test, the wear profile was obtained by the surface profilometer and the
material volume loss was calculated. As a result of the tests, it has been
observed that the surface hardness and wear resistance of the AA7075 alloy was
significantly increased by the application of PEO coatings.
The
coatings consist of a dense inner layer and a porous outer layer. It has been
determined that the coating hardness increased close to substrate/coating
interface while decreasing towards the free surface due to the increased
porosity. The coatings produced in silicon oxide particle-containing solutions
were found to be thicker and rougher than the other coatings. The lowest wear
loss was obtained in the coating produced in titanium-carbide-containing
solutions.

Kaynakça

  • Kitaplar
  • Davis, J.R. (1993). Aluminum and Aluminum Alloys. Cleveland: ASM International. McColm, I. (1990). Ceramic Hardness. New York: Springer US.
  • Makaleler
  • Arunnellaiappan, T., Arun, S., Hariprasad, S., Gowtham, S., Ravisankar, B., Rama Krishna, L., Rameshbabu, N. (2018). Fabrication of corrosion resistant hydrophobic ceramic nanocomposite coatings on PEO treated AA7075. Ceramics International, 44, 874–884. Fatimah, S., Kamil, M.P., Kwon, J.H., Kaseem, M., Ko,Y.G. (2017). Dual incorporation of SiO2 and ZrO2 nanoparticles into the oxide layer on 6061 Al alloy via plasma electrolytic oxidation: Coating structure and corrosion properties. Journal of Alloys and Compound, 707, 358-364. Kollenberg. W., Schneider, H. (1989). Microhardness of Mullite at Temperatures to 1000°. Journal of the American Ceramic Society, 72(9), 1739-1740. Krell, A., Schädlich, S. (2001). Nanoindentation hardness of submicrometer alumina ceramics. Materials Science and Engineering: A, 307(1–2), 172- 181. Lamouri, S., Hamidouche, M., Bouaouadja, N., Belhouchet, H., Garnier, V., Fantozzi, G., Trelkat, J.F. (2017). Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification, Boletín de la Sociedad Española de Cerámica y Vidrio, 56(2), 47-54. Nasiri Vatan, H., Adabi, M. (2017). Investigation of wear and corrosion resistance of nanocomposite coating formed on AZ31B Mg alloy by plasma electrolytic oxidation. The International Journal of Surface Engineering and Coatings, 95(6), 308-315. Necşulescu, D.A. (2011). The Effects of Corrosion on The Mechanical Properties of Aluminium Alloy 7075-T6. U.P.B. Sci. Bull. Series B, 73(1), 223-229. Pitchford, J.E., Stearn, R.J., Kelly, A., Clegg, W.J. (2004). Effect of Oxygen Vacancies on the Hot Hardness of Mullite. Journal of the American Ceramic Society, 84(5), 1167-1168. Shibe, V., Chawla, V. (2014). A Review of Surface Modification Techniques in Enhancing the Erosion Resistance of Engineering Components. International Journal of Research in Mechanical Engineering & Technology, 4,92-95. Xin, S., Song, L., Zhao, R., Hu, X. (2006) Composition and thermal properties of the coating containing mullite and alumina, Materials Chemistry and Physics, 97(1), 132-136. Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., Dowey, S.J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122, 73–93.

Savunma Sanayisinde Aşırı Koşullara Maruz Kalan Hafif Yapısal Malzemelerin Yüzey Modifikasyonu

Yıl 2019, Cilt: 18 Sayı: 36, 67 - 90, 06.11.2019
https://doi.org/10.17134/khosbd.642140

Öz

Bu çalışmada, alüminyum
oksit, silisyum oksit, wolfram-titanyum karbür ve titanyum karbür parçacıklar
ilave edilerek hazırlanan çözeltilerde, plazma elektrolitik oksidasyon (PEO)
yöntemiyle AA7075 alaşımı üzerine seramik kaplamalar geliştirilmiştir. Kaplamaların
faz bileşimi x-ışını kırınımı (XRD) yöntemiyle incelenmiştir. Taramalı elektron
mikroskobu (SEM) ile kaplamaların yüzey morfolojisi ve kesitin mikroyapısı
incelenmiştir. Enerji dağılımlı x-ışını spektrometresi (EDX) sayesinde
kaplamaların kimyasal analizi yapılmıştır. Kaplamaların sertlik değerleri
mikroVickers sertlik test cihazıyla ölçülmüştür. Kaplama yapılan altlık
alaşımların sürtünme ve aşınma davranışını incelemek amacıyla 100Cr6 çelik ve
alüminyum oksit bilyelere karşı kuru kaymalı aşınma testleri yapılmıştır.
Aşınma testi sonrası yüzey profilometresiyle aşınma profili çıkarılarak aşınan
malzeme hacmi hesaplanmıştır. Yapılan testler sonucunda AA7075 alaşımın yüzey
sertliği ve aşınma dayanımının üretilen PEO kaplamalarla önemli ölçüde arttığı
gözlenmiştir. Kaplamalar yoğun iç tabaka ve gözenekli üst tabakadan
oluşmaktadır. Kaplama sertliğinin altlık/kaplama arayüzeyine yakın bölgede
yüksek, yüzeye doğru ilerledikçe gözenekliliğin artışından dolayı düştüğü
belirlenmiştir. Silisyum oksit parçacık içeren çözeltilerde üretilen
kaplamaların diğer kaplamalara göre daha kalın ve pürüzlü olduğu tespit
edilmiştir. En düşük aşınma kaybı titanyum karbür içeren çözeltilerde üretilen
kaplamada elde edilmiştir.

Kaynakça

  • Kitaplar
  • Davis, J.R. (1993). Aluminum and Aluminum Alloys. Cleveland: ASM International. McColm, I. (1990). Ceramic Hardness. New York: Springer US.
  • Makaleler
  • Arunnellaiappan, T., Arun, S., Hariprasad, S., Gowtham, S., Ravisankar, B., Rama Krishna, L., Rameshbabu, N. (2018). Fabrication of corrosion resistant hydrophobic ceramic nanocomposite coatings on PEO treated AA7075. Ceramics International, 44, 874–884. Fatimah, S., Kamil, M.P., Kwon, J.H., Kaseem, M., Ko,Y.G. (2017). Dual incorporation of SiO2 and ZrO2 nanoparticles into the oxide layer on 6061 Al alloy via plasma electrolytic oxidation: Coating structure and corrosion properties. Journal of Alloys and Compound, 707, 358-364. Kollenberg. W., Schneider, H. (1989). Microhardness of Mullite at Temperatures to 1000°. Journal of the American Ceramic Society, 72(9), 1739-1740. Krell, A., Schädlich, S. (2001). Nanoindentation hardness of submicrometer alumina ceramics. Materials Science and Engineering: A, 307(1–2), 172- 181. Lamouri, S., Hamidouche, M., Bouaouadja, N., Belhouchet, H., Garnier, V., Fantozzi, G., Trelkat, J.F. (2017). Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification, Boletín de la Sociedad Española de Cerámica y Vidrio, 56(2), 47-54. Nasiri Vatan, H., Adabi, M. (2017). Investigation of wear and corrosion resistance of nanocomposite coating formed on AZ31B Mg alloy by plasma electrolytic oxidation. The International Journal of Surface Engineering and Coatings, 95(6), 308-315. Necşulescu, D.A. (2011). The Effects of Corrosion on The Mechanical Properties of Aluminium Alloy 7075-T6. U.P.B. Sci. Bull. Series B, 73(1), 223-229. Pitchford, J.E., Stearn, R.J., Kelly, A., Clegg, W.J. (2004). Effect of Oxygen Vacancies on the Hot Hardness of Mullite. Journal of the American Ceramic Society, 84(5), 1167-1168. Shibe, V., Chawla, V. (2014). A Review of Surface Modification Techniques in Enhancing the Erosion Resistance of Engineering Components. International Journal of Research in Mechanical Engineering & Technology, 4,92-95. Xin, S., Song, L., Zhao, R., Hu, X. (2006) Composition and thermal properties of the coating containing mullite and alumina, Materials Chemistry and Physics, 97(1), 132-136. Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., Dowey, S.J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122, 73–93.
Toplam 4 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hayrani Ulutürk Bu kişi benim

Uğur Malayoğlu Bu kişi benim

Kadir Cihan Tekin

Yayımlanma Tarihi 6 Kasım 2019
Gönderilme Tarihi 13 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 18 Sayı: 36

Kaynak Göster

IEEE H. Ulutürk, U. Malayoğlu, ve K. C. Tekin, “Savunma Sanayisinde Aşırı Koşullara Maruz Kalan Hafif Yapısal Malzemelerin Yüzey Modifikasyonu”, Savunma Bilimleri Dergisi, c. 18, sy. 36, ss. 67–90, 2019, doi: 10.17134/khosbd.642140.