Araştırma Makalesi
BibTex RIS Kaynak Göster

Application of EN 50122 Standard in Metro Lines and Energy Optimization Option

Yıl 2021, Cilt: 7 Sayı: 1, 74 - 93, 30.06.2021
https://doi.org/10.34186/klujes.865974

Öz

In electric rail transportation systems, AC and DC supply voltages are preferred depending on the configuration and line specifications of the supply system. DC voltage is mostly used in urban lines due to the requirements set by the system safety features. The DC voltage selection raises the problem of controlling the rail voltage in contrast to its many advantages for the system. As the positive terminal of the DC voltage, the positive terminal of the rectifier is connected to the DC energy transmission system, while the negative terminal is connected to the rails. Since the rail conductor is isolated from the ground, there is a voltage difference between the rail and the ground. While this voltage is defined as touch voltage, as a result, leakage currents from rails to earth, adverse effects in terms of human life and the life of equipment used under operation occur. The limits of the touch voltage formed are determined in the EN50122 standard and it is stated that the operation takes some measures in this regard. In this study, the control methods used for the solution of this problem are explained comparatively in DC fed rail systems by analyzing the rail ground voltage over the circuit topology. By explaining the relevant standard with the circuit model, the success rate of the applied methods was calculated by comparing with the previous situation.


An Erratum to this article was published on 31 December 2021. https://dergipark.org.tr/en/pub/klujes/issue/67590/1051445 

Kaynakça

  • [1] Xu, S.,Y., Li, W., Wang, Y., Q. Effects of Vehicle Running Mode on Rail Potential and Stray Current in DC Mass Transit Systems. Vehicular Technology, IEEE Transactions on. 62, (2013), 3569-3580.
  • [2] Ibrahem, A., Elrayyah, A., Sozer, Y., Abreu, A. DC Railway System Emulator for Stray Current and Touch Voltage Prediction. IEEE Transactions on Industry Applications. 53(1), 2017, 439-446.
  • [3] Memon, S. A., Fromme, P. Stray current corrosion mitigation, testing and maintenance in DC transit system. International Journal of Transport Development and Integration. 1(3), (2017), 511-519.
  • [4] Charalambous, C., Cotton, I., Aylott, P., Kokkinos, N. A Holistic Stray Current Assessment of Bored Tunnel Sections of DC Transit Systems. Power Delivery, IEEE Transactions on. 28, (2013), 1048-1056.
  • [5] Alamuti, M., M., Nouri, H., Jamali, S., Effects of earthing systems on stray current for corrosion and safety behaviour in practicalmetro systems, IET Electr. Syst. Transp., 1, (2011), 69–79.
  • [6] Tzeng, Y., S., Lee, C.,H. Analysis of Rail Potential and Stray Currents in a Direct-Current Transit System. Power Delivery, IEEE Transactions on. 25, (2010), 1516 - 1525.
  • [7] Vranesic, K., Serdar, M., Lakusic, S. Analysis of electrical potential and stray currents at DC transit system. International Conference on Sustainable Materials, Systems and Structures (SMSS 2019), 40-44.
  • [8] Brenna, A., Lazzari, L., Ormellese, M. Stray current control by a new approach based on current monitoring on a potential probe. Corrosion Engineering, Science and Technology. 52(5), (2017), 359-364.
  • [9] Yang, X.,Hao, X., Zheng, T. Stray Current and Rail Potential Dynamic Simulation System Based on Bidirectional Variable Resistance Module. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society. 34, (2019), 69-81.
  • [10] Zakowski, K. The determination and identification of stray current source influences on buried pipelines using time/frequency analysis. Anti-corrosion Methods and Materials - Anti-Corros Method Mater. 56, (2009), 330-333.
  • [11] Du, G., Wang, C., Liu, J., Li, G., Zhang, D. Effect of Over Zone Feeding on Rail Potential and Stray Current in DC Mass Transit System. Mathematical Problems in Engineering. 2, (2016), 1-15.
  • [12] Niasati, M., Gholami, A. Overview of stray current control in DC railway systems. International Conference on Railway Engineering, (2008), 1 - 6.
  • [13] Charalambous, C., Buxton, D., Aylott, P. Practical Contemplation of Stray Current Calculation and Monitoring in DC Mass Transit Systems. IEEE Vehicular Technology Magazine. 11(2), (2016), 24-31.
  • [14] Susanto, A., Koleva, D., Copuroglu, O., Beek, K., Breugel, K. Mechanical, Electrical and Microstructural Properties of Cement-Based Materials in Conditions of Stray Current Flow. Journal of Advanced Concrete Technology. 11, (2013), 119-134.
  • [15] Akçay, M., T., Kocaarslan, İ. Simulation of Multi-Vehicle Signaling System with Matlab / Simulink and Design of Train Timetable, Journal of Science and Engineering, 6, (2019), 799-807.
  • [16] He, J., Yu, L., Wang, X., Song, X. Simulation of transient skin effect of DC railway system based on MATLAB/simulink. Power Delivery, IEEE Transactions on. 28, (2013), 145-152.
  • [17] Ogunsola, A., Mariscotti, A., Sandrolini, L. Estimation of Stray Current From a DC-Electrified Railway and Impressed Potential on a Buried Pipe. IEEE Transactions on Power Delivery. 27, (2012), 2238-2246.
  • [18] Tian, Z., Hillmansen, S., Roberts, C., Weston, P., Chen, L., Zhao, N., Su, S., Xin, T. Modeling and simulation of DC rail traction systems for energy saving. 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC. (2014), 2354-2359.

METRO HATLARINDAKI RAY GERILIMINI EN 50122 STANDARDINA UYGUN OLARAK SINIRLANDIRILMADA KULLANILAN YÖNTEMLERIN KARŞILAŞTIRILMASI

Yıl 2021, Cilt: 7 Sayı: 1, 74 - 93, 30.06.2021
https://doi.org/10.34186/klujes.865974

Öz

Elektrikli raylı ulaşım sistemlerinde besleme sisteminin konfigürasyonuna ve hat özelliklerine bağlı olarak AC ve DC besleme gerilimleri tercih edilmektedir. Sistem emniyet özelliklerinin belirlediği gereksinimlerden dolayı şehir içi hatlarda çoğunlukla DC gerilim kullanılmaktadır. DC gerilim seçimi sistem için sağladığı birçok avantajına zıt olarak ray geriliminin kontrolü problemini ortaya çıkarmaktadır. DC gerilimde pozitif uç olarak redresörün artı ucu DC enerji iletim sistemine bağlanırken eksi uç raylara bağlanmaktadır. Ray iletkeni topraktan izole olduğundan dolayı ise ray ile toprak arasında gerilim farkı oluşmaktadır. Bu gerilim dokunma gerilimi olarak tanımlanırken neticesinde raylardan toprağa doğru oluşacak sızıntı akımları, insan hayatı açısından olumsuz etkiler ve işletme altında kullanılan ekipmanların ömrünün azalması gibi durumlar ortaya çıkmaktadır. Oluşan dokunma geriliminin limitleri EN50122 standardında belirlenerek işletmenin bu konuda bazı tedbirleri alması belirtilmiştir. Bu çalışmada DC beslemeli raylı sistemlerde ray toprak geriliminin devre topolojisi üzerinden analizi yapılarak bu problemin çözümü için kullanılan kontrol yöntemleri karşılaştırmalı olarak anlatılmıştır. Devre modeliyle birlikte ilgili standart anlatılarak, uygulanan yöntemlerin başarı oranı önceki durumla karşılaştırılarak hesaplanmıştır.


Bu makale için 31-12-2021 tarihinde bir düzeltme yayınlandı. https://dergipark.org.tr/tr/pub/klujes/issue/67590/1051445 

Kaynakça

  • [1] Xu, S.,Y., Li, W., Wang, Y., Q. Effects of Vehicle Running Mode on Rail Potential and Stray Current in DC Mass Transit Systems. Vehicular Technology, IEEE Transactions on. 62, (2013), 3569-3580.
  • [2] Ibrahem, A., Elrayyah, A., Sozer, Y., Abreu, A. DC Railway System Emulator for Stray Current and Touch Voltage Prediction. IEEE Transactions on Industry Applications. 53(1), 2017, 439-446.
  • [3] Memon, S. A., Fromme, P. Stray current corrosion mitigation, testing and maintenance in DC transit system. International Journal of Transport Development and Integration. 1(3), (2017), 511-519.
  • [4] Charalambous, C., Cotton, I., Aylott, P., Kokkinos, N. A Holistic Stray Current Assessment of Bored Tunnel Sections of DC Transit Systems. Power Delivery, IEEE Transactions on. 28, (2013), 1048-1056.
  • [5] Alamuti, M., M., Nouri, H., Jamali, S., Effects of earthing systems on stray current for corrosion and safety behaviour in practicalmetro systems, IET Electr. Syst. Transp., 1, (2011), 69–79.
  • [6] Tzeng, Y., S., Lee, C.,H. Analysis of Rail Potential and Stray Currents in a Direct-Current Transit System. Power Delivery, IEEE Transactions on. 25, (2010), 1516 - 1525.
  • [7] Vranesic, K., Serdar, M., Lakusic, S. Analysis of electrical potential and stray currents at DC transit system. International Conference on Sustainable Materials, Systems and Structures (SMSS 2019), 40-44.
  • [8] Brenna, A., Lazzari, L., Ormellese, M. Stray current control by a new approach based on current monitoring on a potential probe. Corrosion Engineering, Science and Technology. 52(5), (2017), 359-364.
  • [9] Yang, X.,Hao, X., Zheng, T. Stray Current and Rail Potential Dynamic Simulation System Based on Bidirectional Variable Resistance Module. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society. 34, (2019), 69-81.
  • [10] Zakowski, K. The determination and identification of stray current source influences on buried pipelines using time/frequency analysis. Anti-corrosion Methods and Materials - Anti-Corros Method Mater. 56, (2009), 330-333.
  • [11] Du, G., Wang, C., Liu, J., Li, G., Zhang, D. Effect of Over Zone Feeding on Rail Potential and Stray Current in DC Mass Transit System. Mathematical Problems in Engineering. 2, (2016), 1-15.
  • [12] Niasati, M., Gholami, A. Overview of stray current control in DC railway systems. International Conference on Railway Engineering, (2008), 1 - 6.
  • [13] Charalambous, C., Buxton, D., Aylott, P. Practical Contemplation of Stray Current Calculation and Monitoring in DC Mass Transit Systems. IEEE Vehicular Technology Magazine. 11(2), (2016), 24-31.
  • [14] Susanto, A., Koleva, D., Copuroglu, O., Beek, K., Breugel, K. Mechanical, Electrical and Microstructural Properties of Cement-Based Materials in Conditions of Stray Current Flow. Journal of Advanced Concrete Technology. 11, (2013), 119-134.
  • [15] Akçay, M., T., Kocaarslan, İ. Simulation of Multi-Vehicle Signaling System with Matlab / Simulink and Design of Train Timetable, Journal of Science and Engineering, 6, (2019), 799-807.
  • [16] He, J., Yu, L., Wang, X., Song, X. Simulation of transient skin effect of DC railway system based on MATLAB/simulink. Power Delivery, IEEE Transactions on. 28, (2013), 145-152.
  • [17] Ogunsola, A., Mariscotti, A., Sandrolini, L. Estimation of Stray Current From a DC-Electrified Railway and Impressed Potential on a Buried Pipe. IEEE Transactions on Power Delivery. 27, (2012), 2238-2246.
  • [18] Tian, Z., Hillmansen, S., Roberts, C., Weston, P., Chen, L., Zhao, N., Su, S., Xin, T. Modeling and simulation of DC rail traction systems for energy saving. 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC. (2014), 2354-2359.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Sayı
Yazarlar

Mehmet Taciddin Akçay 0000-0002-1050-4566

Yayımlanma Tarihi 30 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 7 Sayı: 1

Kaynak Göster

APA Akçay, M. T. (2021). METRO HATLARINDAKI RAY GERILIMINI EN 50122 STANDARDINA UYGUN OLARAK SINIRLANDIRILMADA KULLANILAN YÖNTEMLERIN KARŞILAŞTIRILMASI. Kirklareli University Journal of Engineering and Science, 7(1), 74-93. https://doi.org/10.34186/klujes.865974