Araştırma Makalesi
BibTex RIS Kaynak Göster

METALİK MALZEMELERİN YÜKSEK HIZLARDAKİ EROZYON DAVRANIŞININ DENEYSEL İNCELENMESİ

Yıl 2019, Cilt: 7 Sayı: 3, 559 - 572, 01.09.2019
https://doi.org/10.36306/konjes.613864

Öz

Bu çalışmada, havacılık sektöründe yaygın olarak
kullanılan AA6061,  Ti-6Al-4V alaşımları
ile SS304 paslanmaz çeliğinin yüksek hızlardaki erozyon davranışları deneysel
olarak incelenmiştir. Erozyon deneylerinin bir kısmı 90° sabit çarpma açısı
için 100, 127, 170, 210, 250 m/s çarpma hızlarında gerçekleştirilmişken diğer
kısmı 100 m/s sabit çarpma hızı için farklı çarpma açılarında (20, 30, 45, 60,
90°) gerçekleştirilmiştir. Deneyler sonucunda numunelerdeki kütlesel erozyon
oranları; zamana, hıza ve açıya göre elde edilmiştir. İlave olarak
malzemelerdeki hacimsel erozyon oranları hesaplanmış ve malzemelerde oluşan
krater derinlikleri ölçülmüştür. Çalışmalar neticesinde en iyi erozyon
performansı kütlesel kayıplar bakımından AA6061 alaşımında ve en kötü erozyon
performansı SS304 paslanmaz çeliğinde görülmüştür. Hacimsel erozyon performansı
ise en kötü AA6061 alaşımında belirlenmiş ve bu sonuç optik profilometre cihazı
ile yapılan ölçümlerde de desteklenmiştir. 

Kaynakça

  • Akdoğan, A., 10-12 Mayıs 2000, Uçak Endüstrisinde Kullanılan Metal ve Metal Dışı Malzemeler ve Bu Malzemelerin Muayene Yöntemleri, Kayseri 3. Havacılık Sempozyumu
  • Ally, S., 2010, Abrasive Jet Micro-Machining Of Metals, Master Thesis, Ryerson University, Canada,
  • ASTM International, 2004, “Standard test method for conducting erosion tests by solid particle impingement using gas jets.” Designation: G 76 – 04,
  • ASTM International, 2010, “Standard test method for dust erosion resistance of optical and infrared transparent materials and coatings.” Designation: F1864 – 05.
  • Atroshenko, S.A., Evstifeev, A.D., Kazarinov, N.A., Petrov, Yu. V., Valiev, R.Z., 2017, Behaviour of the grade 5 titanium alloy in different structural states in conditions of high-speed erosion. Procedia Structural Integrity, 190-195.
  • Avcu, E., 2013, Titanyum Alaşımlarının Partikül Erozyonu İle Pürüzlendirilmesi ve Aşındırılması İşlemlerinin Optimizasyonu, Doktora Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli.
  • Bousser, E., Martinu, L., Klemberg-Sapieha, J.E., 2014, Solid particle erosion mechanisms of protective coatings for aerospace applications, Surface & Coatings Technology, 257, 165-181.
  • Emiliani, M., Brown, R., 1984, The effect of microstructure on the erosion of Ti-6Al-4V by spherical particles at 90° impact angles. Wear 97, 323-338.
  • Finnie, I., 1958, The Mechanism of Erosion of Ductile Metals, Proc. 3rd U.S. National Congress of Applied Mechanics, 527-532.
  • Finnie, I., 1960, Erosion of surfaces by solid particles, Wear, 3: 87–103.
  • Güler, K. A., 2003, Uçak Yapımında Kullanılan Malzemeler ve Özelliklerinin İncelenmesi, Bitirme Tezi, Yıldız Teknik Üniversitesi, İstanbul.
  • Hadavi, V., Papini, M., 2015, Numerical modeling of particle embedment during solid particle erosion of ductile materials, Wear, 342-343,310-321.
  • Hutchings, I.M., Winter, R. E. ,1976, Field JE. Solid particle erosion of metals: the removal of surface material by spherical projectiles, Proc. R. Soc., 348 (Ser A), 379-392. MIL-STD-3033, 2010. “Particle/sand erosion testing of rotor blade protective materials.”. Morrison, C.T., Scattergood, R.O., Routbort, J.L., 1986, Erosion of 304 stainless steel. Wear 111, 1-13.
  • Nsoesie, S., 2013, Experimental Investigation and Analytical Modeling of Solid-Particle Erosion Behavior of Stellite Alloys, Master Thesis, Carleton University, Canada.
  • Oka, Y. I., Okamura, K., Yoshida, T., 2005, Practical estimation of erosion damage caused by solid particle impact: part 1: effects of impact parameters on a predictive equation. Wear, 259, 1-6, 95-101.
  • Parsi, M., Agrawal, M., Srinivasan, V., Vieira, R. E., Torres, C. F, Brenton, S., McLauryd, S. B., Shirazi, S. A., 2015, “CFD simulation of sand particle erosion in gas-dominant multiphase flow.” Journal of Natural Gas Science and Engineering, 27, 706-718.
  • Rana, F., Stefanescu, D. M., 1989, Friction properties of Al 1.5PctMg/SiC particulate metal-matrix composites, Metallurgical Transactions A, 20, 1564-1566.
  • Ruff, A.W., Ives, L.K., 1975, Measurement Of Solid Particle Velocity İn Erosive Wear, Wear, 35, 195-199.
  • Shimizu, K., Noguchi, T., Seitoh, H., Okada, M., Matsubara, Y., 2001, FEM analysis of erosive wear, Wear 250, 779–784.
  • Yerramareddy, S., ve Bahadur, S., 1990, Effect of operational variables, microstructure and mechanical properties on the erosion of Ti-6Al-4V, Wear,142, 253-263.
  • Yıldıran, Y., 2013, 3003 H14 Alüminyum Alaşımının Katı Partikül Erozyon Davranışı, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli.
  • Zhou J., Bahadur S., 1995, Erosion-corrosion of Ti-6Al-4V in elevated temperature air environment, Wear, 186, 332-339.
  • Zincir S., 1975, Uçak Endüstrisinde Kullanılan Alüminyum Alaşımları ve Özellikleri, Bitirme Tezi, Kimya Metalurji Fak. Metalurji ve Malzeme Müh. Bölümü, , İstanbul Teknik Üniversitesi, İstanbul

Experimentally Investigation of Solid Particle Erosion of Metallic Materials at High Speed

Yıl 2019, Cilt: 7 Sayı: 3, 559 - 572, 01.09.2019
https://doi.org/10.36306/konjes.613864

Öz

In this study, the erosion behaviors of AA6061,
Ti-6Al-4V alloys and SS304 stainless steel, which are used commonly in the
aviation industry, have been experimentally investigated at high speeds. A part
of the erosion experiments were carried out at impact velocities of 100, 127,
170, 210, 250 m/s at a constant impact angle of 90°, the others carried out at
different impact angles (20, 30, 45, 60, 90°) at a constant velocity of 100
m/s. As a result of the experiments, the mass erosion rates in the samples were
measured and obtained the changes to time, velocity and angle. Also, the
volumetric erosion rates in materials were calculated and the crater depths in
the materials were measured. As a result of studies, the best erosion
performance was obtained at AA6061 alloy and the worst at SS304 stainless
steel. The worst volumetric erosion performance was obtained at at AA6061 alloy
and that supported in the measurements with optical profilometer.

Kaynakça

  • Akdoğan, A., 10-12 Mayıs 2000, Uçak Endüstrisinde Kullanılan Metal ve Metal Dışı Malzemeler ve Bu Malzemelerin Muayene Yöntemleri, Kayseri 3. Havacılık Sempozyumu
  • Ally, S., 2010, Abrasive Jet Micro-Machining Of Metals, Master Thesis, Ryerson University, Canada,
  • ASTM International, 2004, “Standard test method for conducting erosion tests by solid particle impingement using gas jets.” Designation: G 76 – 04,
  • ASTM International, 2010, “Standard test method for dust erosion resistance of optical and infrared transparent materials and coatings.” Designation: F1864 – 05.
  • Atroshenko, S.A., Evstifeev, A.D., Kazarinov, N.A., Petrov, Yu. V., Valiev, R.Z., 2017, Behaviour of the grade 5 titanium alloy in different structural states in conditions of high-speed erosion. Procedia Structural Integrity, 190-195.
  • Avcu, E., 2013, Titanyum Alaşımlarının Partikül Erozyonu İle Pürüzlendirilmesi ve Aşındırılması İşlemlerinin Optimizasyonu, Doktora Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli.
  • Bousser, E., Martinu, L., Klemberg-Sapieha, J.E., 2014, Solid particle erosion mechanisms of protective coatings for aerospace applications, Surface & Coatings Technology, 257, 165-181.
  • Emiliani, M., Brown, R., 1984, The effect of microstructure on the erosion of Ti-6Al-4V by spherical particles at 90° impact angles. Wear 97, 323-338.
  • Finnie, I., 1958, The Mechanism of Erosion of Ductile Metals, Proc. 3rd U.S. National Congress of Applied Mechanics, 527-532.
  • Finnie, I., 1960, Erosion of surfaces by solid particles, Wear, 3: 87–103.
  • Güler, K. A., 2003, Uçak Yapımında Kullanılan Malzemeler ve Özelliklerinin İncelenmesi, Bitirme Tezi, Yıldız Teknik Üniversitesi, İstanbul.
  • Hadavi, V., Papini, M., 2015, Numerical modeling of particle embedment during solid particle erosion of ductile materials, Wear, 342-343,310-321.
  • Hutchings, I.M., Winter, R. E. ,1976, Field JE. Solid particle erosion of metals: the removal of surface material by spherical projectiles, Proc. R. Soc., 348 (Ser A), 379-392. MIL-STD-3033, 2010. “Particle/sand erosion testing of rotor blade protective materials.”. Morrison, C.T., Scattergood, R.O., Routbort, J.L., 1986, Erosion of 304 stainless steel. Wear 111, 1-13.
  • Nsoesie, S., 2013, Experimental Investigation and Analytical Modeling of Solid-Particle Erosion Behavior of Stellite Alloys, Master Thesis, Carleton University, Canada.
  • Oka, Y. I., Okamura, K., Yoshida, T., 2005, Practical estimation of erosion damage caused by solid particle impact: part 1: effects of impact parameters on a predictive equation. Wear, 259, 1-6, 95-101.
  • Parsi, M., Agrawal, M., Srinivasan, V., Vieira, R. E., Torres, C. F, Brenton, S., McLauryd, S. B., Shirazi, S. A., 2015, “CFD simulation of sand particle erosion in gas-dominant multiphase flow.” Journal of Natural Gas Science and Engineering, 27, 706-718.
  • Rana, F., Stefanescu, D. M., 1989, Friction properties of Al 1.5PctMg/SiC particulate metal-matrix composites, Metallurgical Transactions A, 20, 1564-1566.
  • Ruff, A.W., Ives, L.K., 1975, Measurement Of Solid Particle Velocity İn Erosive Wear, Wear, 35, 195-199.
  • Shimizu, K., Noguchi, T., Seitoh, H., Okada, M., Matsubara, Y., 2001, FEM analysis of erosive wear, Wear 250, 779–784.
  • Yerramareddy, S., ve Bahadur, S., 1990, Effect of operational variables, microstructure and mechanical properties on the erosion of Ti-6Al-4V, Wear,142, 253-263.
  • Yıldıran, Y., 2013, 3003 H14 Alüminyum Alaşımının Katı Partikül Erozyon Davranışı, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli.
  • Zhou J., Bahadur S., 1995, Erosion-corrosion of Ti-6Al-4V in elevated temperature air environment, Wear, 186, 332-339.
  • Zincir S., 1975, Uçak Endüstrisinde Kullanılan Alüminyum Alaşımları ve Özellikleri, Bitirme Tezi, Kimya Metalurji Fak. Metalurji ve Malzeme Müh. Bölümü, , İstanbul Teknik Üniversitesi, İstanbul
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ali İhsan Budur

Hasan Gedikli

Yayımlanma Tarihi 1 Eylül 2019
Gönderilme Tarihi 27 Eylül 2018
Kabul Tarihi 14 Şubat 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 3

Kaynak Göster

IEEE A. İ. Budur ve H. Gedikli, “METALİK MALZEMELERİN YÜKSEK HIZLARDAKİ EROZYON DAVRANIŞININ DENEYSEL İNCELENMESİ”, KONJES, c. 7, sy. 3, ss. 559–572, 2019, doi: 10.36306/konjes.613864.