Araştırma Makalesi
BibTex RIS Kaynak Göster

ÇİFT KÖPRÜLÜ ASKI TİP KREN SİSTEMLERİNİN SONLU ELEMANLAR METODU İLE MODAL ANALİZİ

Yıl 2019, Cilt: 7 Özel Sayı, 975 - 988, 30.12.2019
https://doi.org/10.36306/konjes.627067

Öz

Doğal frekanslar cisimlerin kütle ve esnekliğine
bağlı olarak belirlenen bir parametredir. 
Kren sistem elemanların hepsi birbiri ile temasta olmasından dolayı bir
bütün olarak tasarlanıp frekansların belirlenmesi gerekmektedir. Bu nedenle
kren sisteminin çalışma şartlarına göre üzerinde araba bulunması ve sistemde
yapının yük ile hareket etmesi sebebi ile kren sistemi bir bütün olarak
modellenmiştir. Ayrıca kren sistemlerinde köprü grubunun hareket ettiği
taşıyıcı çerçevelerde dikkate alınarak modal analizler Sonlu Elamanlar Metodu
(SEM) ile yapılmıştır. Köprü grubu, kaldırma grubu ve yük ile tasarlanan kren
sisteminde; araba grubunun ve yükün köprü başında ve ortasında olması
durumlarına göre de analizler yapılmıştır. Belirtilen şartlara göre doğal
frekans ve mod şekilleri elde edilerek, karşılaştırmalar yapılmış
ve tasarım özelliklerinin sonuçlar üzerindeki etkileri üzerinde durulmuştur.

Destekleyen Kurum

Erciyes Üniversitesi

Proje Numarası

FCD-2015-5162

Teşekkür

Bu çalışma Erciyes Üniversitesi Bilimsel Araştırma Projeleri Birimi (BAP)tarafından FCD-2015-5162 nolu proje ile desteklenmiştir. Yazarlar Erciyes Üniversitesi BAP birimine desteklerinden dolayı teşekkür eder.

Kaynakça

  • Abdullah, O.I. and J. Schlattmann, 2012, Vibration Analysis of the Friction clutch Disc Using. Advances in Mechanical Engineering and its Applications (AMEA), Cilt 1, Sayı 4, ss. 86-91.
  • Azeloğlu, C.A.H., A. G.; Özen S.; Çolakçakır Ö. Ü.; Sağrlı A., 2015. Theoretical and experimental deformaiton analysis of crane beams subjected to moving loads. Sigma Journal of Engineering and Natural Sciences, 33(4): p. 653-663.
  • Abu-Hilal, M., 2003, Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions. Journal of Sound and Vibration, Cilt 267, Sayı 2, ss. 191-207.
  • Cha, P.D., 2005, A general approach to formulating the frequency equation for a beam carrying miscellaneous attachments. Journal of Sound and Vibration, Cilt 286, Sayı 4-5, ss. 921-939.
  • Cha, P.D., 2002, Eigenvalues of a linear elastic carrying lumped masses, springs and viscous dampers. Journal of Sound and Vibration, Cilt 257, Sayı 4, ss. 798-808.
  • Cha, P.D. and W.C. Wang, A novel approach to determine the frequency equations of combined dynamical systems. Journal of Sound and Vibration, Cilt 219, Sayı 4, ss. 689-706.
  • Fryba, L.,1999, Vibration of Solids and Structures Under Moving Loads. Thomas Telford, London
  • Low, K.H.,1997 An analytical-experimental comparative study of vibration analysis for loaded beams wıth variable boundary conditions. Computers & Structures Cilt 65, Sayı 1,ss. 97-107.
  • Low, K.H., G.B. Chai, and G.S. Tan, 1997, A comparative study of vibrating loaded plates between the rayleigh-ritz and experimental methods. Journal of Sound and Vibration, Cilt 199, Sayı 2,ss. 285-297.
  • Malgaca L., Kara C., and Demirsoy M., 2008, Dinamik Şekil Değiştirme Ölçümü ve Bir Tavan Vincinde Uygulaması, in VII. Ulusal Ölçüm Bilim Kongresi, MMO Tepekule Kongre ve Sergi Merkezi İzmir. ss. 191-201.
  • Pesterev, A.V., Yanh, B.,Bergman, L.A., Tan, A., 2001. Responce of elastic continiuum carrrying multiple moving oscillators. Journal of Engineering Mechanics, 127(3): p. 260-265.
  • Pesterev, A.V. and L.A. Bergman, 2000. An improved series expansion of the solution to the moving oscillator problem. Journal of Vibration and Acoustics. 122(1): p. 54.
  • Vlada Gašić, N. Z., Aleksandar Obradović, Srđan Bošnjak (2011). Consideration of Moving Oscillator Problem in Dynamic Responses of Bridge Cranes, FME Transactions, 39: 17-24.
  • Wu, J.J., A.R. Whittaker, and M.P. Cartmell, 2001, Dynamic responses of structures to moving bodies using combined finite element and analytical methods. International Journal of Mechanical Sciences, Cilt 43, Sayı 11, ss. 2555-2579.
  • Wu, J.J.,2006 Finite element analysis and vibration testing of a three-dimensional crane structure. Measurement, Cilt 39, Sayı 8, ss. 740-749.
  • Yang, W., Z. Zhang, and R. Shen,2007, Modeling of system dynamics of a slewing flexible beam with moving payload pendulum. Mechanics Research Communications, Cilt 34, Sayı3, ss. 260-266.
  • Yıldırım, Ş. and E. Esim. 2017. A New Approach for Dynamic Analysis of Overhead Crane Systems Under Moving Loads. in CONTROLO 2016, Cham: Springer International Publishing.
  • Yıldırım, Ş., Esim, E., 2019, Free vibration analysis of multi-carriages crane systems with finite element method, in 5th International Conference on Engineering and Naturel Science. Prague. p. 22-30.
  • Yıldırım, Ş., Esim, E., 2019, Harmonic Response Analysis of Double Bridge Crane System on Multi Carriages, in 5th International Conference on Engineering and Naturel Science. Prague. p. 90-96.
  • Zrnić, N.Đ., V.M. Gašić, and S.M. Bošnjak, 2015. Dynamic responses of a gantry crane system due to a moving body considered as moving oscillator, Archives of Civil and Mechanical Engineering, 15(1): p. 243-250.

Modal Analysis of Double Beam Overhead Type Crane Systems by Finite Element Method

Yıl 2019, Cilt: 7 Özel Sayı, 975 - 988, 30.12.2019
https://doi.org/10.36306/konjes.627067

Öz

Natural frequencies are a parameter determined by
the mass and flexibility of the bodies. Since all the crane system elements are
in contact with each other, they should be designed as a whole, and their
frequencies should be determined. Therefore, the crane system is modelled as a
whole system due to the presence of cars on the crane system and the movement
of the structure with the load. In addition, modal analysis was performed by
using finite element method in crane systems by taking into consideration the
carrier frames in which the bridge group moves. In the crane system designed
with bridge group, lifting group and load; analyses were made according to the
fact that the car group and the load were at the beginning and middle of bridge.
Natural frequency and mode shapes are obtained according to the specified
conditions, comparisons have been made and the effects of the design
characteristics on the results are emphasized.

Proje Numarası

FCD-2015-5162

Kaynakça

  • Abdullah, O.I. and J. Schlattmann, 2012, Vibration Analysis of the Friction clutch Disc Using. Advances in Mechanical Engineering and its Applications (AMEA), Cilt 1, Sayı 4, ss. 86-91.
  • Azeloğlu, C.A.H., A. G.; Özen S.; Çolakçakır Ö. Ü.; Sağrlı A., 2015. Theoretical and experimental deformaiton analysis of crane beams subjected to moving loads. Sigma Journal of Engineering and Natural Sciences, 33(4): p. 653-663.
  • Abu-Hilal, M., 2003, Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions. Journal of Sound and Vibration, Cilt 267, Sayı 2, ss. 191-207.
  • Cha, P.D., 2005, A general approach to formulating the frequency equation for a beam carrying miscellaneous attachments. Journal of Sound and Vibration, Cilt 286, Sayı 4-5, ss. 921-939.
  • Cha, P.D., 2002, Eigenvalues of a linear elastic carrying lumped masses, springs and viscous dampers. Journal of Sound and Vibration, Cilt 257, Sayı 4, ss. 798-808.
  • Cha, P.D. and W.C. Wang, A novel approach to determine the frequency equations of combined dynamical systems. Journal of Sound and Vibration, Cilt 219, Sayı 4, ss. 689-706.
  • Fryba, L.,1999, Vibration of Solids and Structures Under Moving Loads. Thomas Telford, London
  • Low, K.H.,1997 An analytical-experimental comparative study of vibration analysis for loaded beams wıth variable boundary conditions. Computers & Structures Cilt 65, Sayı 1,ss. 97-107.
  • Low, K.H., G.B. Chai, and G.S. Tan, 1997, A comparative study of vibrating loaded plates between the rayleigh-ritz and experimental methods. Journal of Sound and Vibration, Cilt 199, Sayı 2,ss. 285-297.
  • Malgaca L., Kara C., and Demirsoy M., 2008, Dinamik Şekil Değiştirme Ölçümü ve Bir Tavan Vincinde Uygulaması, in VII. Ulusal Ölçüm Bilim Kongresi, MMO Tepekule Kongre ve Sergi Merkezi İzmir. ss. 191-201.
  • Pesterev, A.V., Yanh, B.,Bergman, L.A., Tan, A., 2001. Responce of elastic continiuum carrrying multiple moving oscillators. Journal of Engineering Mechanics, 127(3): p. 260-265.
  • Pesterev, A.V. and L.A. Bergman, 2000. An improved series expansion of the solution to the moving oscillator problem. Journal of Vibration and Acoustics. 122(1): p. 54.
  • Vlada Gašić, N. Z., Aleksandar Obradović, Srđan Bošnjak (2011). Consideration of Moving Oscillator Problem in Dynamic Responses of Bridge Cranes, FME Transactions, 39: 17-24.
  • Wu, J.J., A.R. Whittaker, and M.P. Cartmell, 2001, Dynamic responses of structures to moving bodies using combined finite element and analytical methods. International Journal of Mechanical Sciences, Cilt 43, Sayı 11, ss. 2555-2579.
  • Wu, J.J.,2006 Finite element analysis and vibration testing of a three-dimensional crane structure. Measurement, Cilt 39, Sayı 8, ss. 740-749.
  • Yang, W., Z. Zhang, and R. Shen,2007, Modeling of system dynamics of a slewing flexible beam with moving payload pendulum. Mechanics Research Communications, Cilt 34, Sayı3, ss. 260-266.
  • Yıldırım, Ş. and E. Esim. 2017. A New Approach for Dynamic Analysis of Overhead Crane Systems Under Moving Loads. in CONTROLO 2016, Cham: Springer International Publishing.
  • Yıldırım, Ş., Esim, E., 2019, Free vibration analysis of multi-carriages crane systems with finite element method, in 5th International Conference on Engineering and Naturel Science. Prague. p. 22-30.
  • Yıldırım, Ş., Esim, E., 2019, Harmonic Response Analysis of Double Bridge Crane System on Multi Carriages, in 5th International Conference on Engineering and Naturel Science. Prague. p. 90-96.
  • Zrnić, N.Đ., V.M. Gašić, and S.M. Bošnjak, 2015. Dynamic responses of a gantry crane system due to a moving body considered as moving oscillator, Archives of Civil and Mechanical Engineering, 15(1): p. 243-250.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Şahin Yıldırım 0000-0002-7149-3274

Emir Esim 0000-0003-0801-9155

Proje Numarası FCD-2015-5162
Yayımlanma Tarihi 30 Aralık 2019
Gönderilme Tarihi 30 Eylül 2019
Kabul Tarihi 1 Kasım 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Özel Sayı

Kaynak Göster

IEEE Ş. Yıldırım ve E. Esim, “ÇİFT KÖPRÜLÜ ASKI TİP KREN SİSTEMLERİNİN SONLU ELEMANLAR METODU İLE MODAL ANALİZİ”, KONJES, c. 7, ss. 975–988, 2019, doi: 10.36306/konjes.627067.