Research Article
BibTex RIS Cite

GENLEŞTİRİLMİŞ CAM TAKVİYELİ SİNTAKTİK KÖPÜK METALİN ÜRETİMİ, İÇYAPI VE MEKANİK ÖZELLİKLERİN İNCELENMESİ

Year 2020, Volume: 8 Issue: 4, 798 - 811, 01.12.2020
https://doi.org/10.36306/konjes.731271

Abstract

Bu çalışmada köpük metallerin geliştirilmiş bir şekli olan Sintaktik Köpük Metal (SKM) üretilmiş ve analiz edilmiştir. SKM’de yapı içindeki gözeneklilik, içi boş seramik küreler yardımıyla oluşturulmaktadır.
SKM kapalı hücre yapısına sahiptir. SKM’lerin avantajları; hafiflik, yüksek basma dayanımı, titreşim sönümleme ve enerji absorbe etme kabiliyetidir. Kompozit bir malzeme olan SKM’in üretiminde matris malzemesi olarak 7075 alüminyum, takviye malzemesi olarak da içi gözenekli yapıya sahip genleştirilmiş cam küre kullanılmıştır. Çalışmamızda SKM sıvı infiltrasyon yöntemi ile üretilmiştir. Bu üretim yönteminde kalıp ve küreler, 800 ˚C sıcaklıktaki fırında bekletildikten sonra fırından çıkarılmış ve kalıp boşluğuna cam küre ve ergimiş alüminyumun yerleştirilmesinden sonra 6,3 kPa’lık döküm basıncı uygulanmıştır. Üretilmiş olan SKM’lerin içyapısı analiz edilmiş, cam kürelerin yapı içinde homojen bir şekilde dağıldığı ve kürelerin kırılmadığı tespit edilmiştir. 25 mm çapında ve 30-33 mm yüksekliğe sahip silindirik SKM numunelerin yoğunluk değerleri Arşimed prensibi kullanılarak 1,33-1,68 g/cm3 olarak ölçülmüştür. Gözeneklilik değerleri ise %53,3-57,2 olarak hesaplanmıştır. Mekanik testler için basma deneyleri gerçekleştirilmiş ve SKM’lerde görülen tipik plato eğrileri tespit edilmiştir. Plato dayanım değerleri 22-42 MPa, darbe sönümleme enerji değerlerinin ise 12-22 MJ/m3 arasında olduğu görülmüştür.
Bu değerler literatürde karşılaşılan verilerle uyumlu olduğu ve plato dayanım değeri ile enerji absorbe etme değerleri arasında doğrusal bir ilişkinin var olduğu tespit edilmiştir.

Supporting Institution

İstanbul Teknik Üniversitesi - Bilimsel Araştırma Projesi (BAP)

Project Number

MYL-2018-41050

Thanks

Bu çalışma İstanbul Teknik Üniversitesi, MYL-2018-41050 no.lu Bilimsel Araştırma Proje (BAP) ile desteklenmiştir.

References

  • Altenaiji, M., Schleyer G.K., Zhao, Y.Y., 2012, “Characterization of Aluminum Matrix Syntactic Foams Under Static and Dynamic Loading, Composites and Their Properties”, IntechOpen, DOI: 10.5772/48560.
  • Al-Sahlani, K., Kisi, E., Fiedler, T., 2019, “Impact of Particle Strength and Matrix Ductility on the Deformation Mechanism of Metallic Syntactic Foam“, Journal of Alloys and Compounds, Vol. 786, pp. 292-299.
  • Asavavisithchai, S., Nisaratanaporn, E., 2010, “Fabrication of Open-Cell Silver Foams Using Disaccharide as Space Holders”, Journal of Science,; Vol.37(2), pp. 222-230.
  • Balch, D. K., Dunand, D. C., 2006, “Load partitioning in aluminum syntactic foams containing ceramic microspheres”, Acta Materialia, Vol. 54(6), pp. 1501-1511.
  • Banhart, J., 2000, "Manufacturing routes for metallic foams", Journal of Metals, Vol. 52(12), pp. 22-27.
  • Banhart, J., 2001, “Manufacture, characterization and application of cellular metals and metal foams”, Progress in Materials Science, Vol.46, pp. 559–632.
  • Banhart, J., 2003, “Aluminum Foams for Lighter Vehicles”, International Journal of Vehicle Design, pp. 1-19. Banhart, J., Ashby, M. F., Fleck, N., 1999, “Metal foams and porous metal structures ‟, Metal Innovation Technologie, Vol. 83, pp. 255-262.
  • Banhart, J., Weaire, D., 2002, “On the road again: metal foams find favor‟, Physics Today, Vol. 55, pp.37-42. Castro, G., Nutt, S.R., 2012, “Synthesis of syntactic steel foam using mechanical pressure infiltration”, Materials Science and Engineering A, Vol. 535, pp. 274– 280.
  • Claar, T. D., 2000, "Ultra-lightweight aluminum foam materials for automotive applications." SAE transactions, pp. 98-106.
  • Daoud, A., El-Khair, M. A., Abdel-Aziz, M., Rohatgi, P., 2007, “Fabrication, microstructure and compressive behavior of ZC63 Mg–microballoon foam composites”, Composites Science and Technology, Vol. 67(9), pp. 1842-1853.
  • Degischer, H.P., Kriszt,B., 2002, “Handbook of Cellular Metals, Production, Processing and Applications”, Wiley-VCH, ISBN 3-527-29320-5.
  • Dorian, K., Balcha, J., O’Dwyerb, G., Davisc, R., Cadyd, C.M., Gray, G.T., Dunanda, D.C., 2005, “Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions”, Materials Science and Engineering A, Vol. 391, pp. 408–417.
  • Duarte, I., Ferreira M.F., 2016, “Composite and Nanocomposite Metal Foams”, Materials, Vol. 9 (79), 1-34. Fiedler, T., Nima Movahedi, York, L., Broxtermann, S., 2020, “Functionally-Graded Metallic Syntactic Foams Produced via Particle Pre-Compaction, Metals, Vol. 10, pp. 312-324.
  • Gauckler, L.J., Waeber, M.M., Conti, C., Duliere, J. M., 1985, “Ceramic Foam for Molten Metal Filtration”, Journal of Metals, September.
  • Hai-jun, Y., Guang-chun, Y., Xiao-lin, W., 2007, “Sound insulation property of Al-Si closed-cell aluminum foam bare board material”, Transactions of nonferrous metals society, Vol. 17, pp. 93–98.
  • Hintz, C., 2000, „Mechanische und tribologische Eigenschaften präzisionsgegossener Schwämme und Werkstoffverbunde", Materialwissenschaften und Werkstofftechnik, Vol. 31(6), pp.574-581.
  • Hipke, T., Hohlfeld, J., Rybandt, S., 2014, "Functionally aluminum foam composites for building industry", Procedia Materials Science, Vol.4, pp. 133-138.
  • Huo, D., Yang, J., Zhou, X., Wang, H., Zhang, T., 2012, “Preparation of open-celled aluminum foams by counter-gravity infiltration casting”, Trans. Nonferrous Met. Soc. China, Vol. 22, pp. 85-89.
  • Jakubowicz, J., Adamek, G., Dewidar, M., 2013, “Titanium foam made with saccharose as a space holder”, Journal of Porous Materials, Vol. 20, pp. 1137–1141.
  • Jinnapat, A., Kennedy, A.R., 2010, “The manufacture of spherical salt beads and their use as dissolvable templates for the production of cellular solids via a powder metallurgy route”, Journal of Alloys and Compounds, Vol. 499, pp. 43-47.
  • Kenesei, P., Kadar, C., Rajkovits, Z., Lendvai, J., 2004, “The influence of cell size distribution on the plastic deformation in metal foams”, Scripta Materialia, Vol. 50, pp. 295–300.
  • Kheradmand, B., Otroj, S., Soleimanpour, Z., Beigyfar, M., 2013, “Comparison between methods used for manufacturing of aluminum foam”, Life Science Journal, Vol. 10.
  • Kiratisaevee, H., Cantwell, W, 2005, “Low-velocity Impact Response of High-performance Aluminum Foam Sandwich Structures”, Journal of Reinforced Plastics and Composite, Vol. 24(10), pp. 1057- 1072.
  • Lehmhusa, D., Weiseb, J., Baumeisterb, J., Peronic, L., Scapinc, M., Ficherac, C., Avallec, M., Bussea, M., 2014, “Quasi-static and dynamic mechanical performance of glass microsphere- and cenosphere- based 316L syntactic foams”, Procedia Materials Science, Vol. 4, pp. 383 – 387.
  • Lin, Y., Zhang, Q., Ma, X., Wu, G., 2016, “Mechanical behavior of pure Al and Al–Mg syntactic foam composites containing glass cenospheres”, Composites: Part A, Vol. 87, pp. 194–202.
  • Manakari, V., 2019, "Evaluation of wear resistance of magnesium/glass microballoon syntactic foams for engineering/biomedical applications." Ceramics International, Vol.11.
  • Mondal, D. P., 2012, "Titanium-cenosphere syntactic foam made through powder metallurgy route", Materials & Design, Vol. 34, pp. 82-89.
  • Mondal, D. P., Das, S., Ramakrishnan, N., Bhasker, K. U., 2009, “Cenosphere filled aluminum syntactic foam made through stir-casting technique”, Composites Part A: Applied Science and Manufacturing, Vol. 40(3), pp. 279-288.
  • Neikov, O., 2019, “Handbook of Non-Ferrous Metal Powders – Technologies and Applications”, 2nd Edition, Elsevier.
  • Nie, Z., Lin, Y., Tong, Q., 2018, "Numerical simulations of two-phase flow in open-cell metal foams with application to aero-engine separators", International Journal of Heat and Mass Transfer, Vol. 127 pp. 917-932.
  • Onofrio, L., Barletta, D., Dimiccoli, V., 2010, "A wide-frequency model of metal foam for shielding applications", IEEE Transactions on Electromagnetic Compatibility, Vol. 52(1), pp. 75-81.
  • Orbulov, I. N., 2012, “Compressive properties of aluminum matrix syntactic foams”, Materials Science and Engineering: A, Vol. 555, pp. 52-56.
  • Orbulov, I.N., 2011, “Syntactic foams produced by pressure infiltration – the effect of pressure and time on infiltration length”, Mechanical Engineering, Vol. 55(1), pp. 21–27.
  • Ozan, S., Katı, N., 2011, 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkey.
  • Pan, L., 2018, "Zn-Matrix Syntactic Foams: Effect of Heat Treatment on Microstructure and Compressive Properties”, Materials Science and Engineering: A), Vol.7.
  • Pan, L., Yang, Y., Ahsan, M. U., Luong, D. D., Gupta, N., Kumar, A., Rohatgi, P. K., 2018, “Zn-matrix syntactic foams: Effect of heat treatment on microstructure and compressive properties”, Materials Science and Engineering: A, Vol. 731, pp. 413-422.
  • Polat, D., Keleş, Ö., Taptık, Y., 2010, “Metalik Köpükler, Alüminyum Metalik Köpük ve Üretim Yöntemleri” Metal Dünyası, Vol. 54.
  • Rabiei, A., Neville, B., Reese, N., Vendra, L., 2007, “New Composite Metal Foams Under Compressive Cyclic Loadings”, Materials Science Forum, Vols. 539-543, pp. 1868-1873.
  • Rabiei, A., Vendra, L., Reese, N., Young, N., Neville, P, Processing and Characterization of a New Composite Metal Foam, Materials Transactions, Vol. 47, No. 9 (2006) pp. 2148 to 2153.
  • Rajak, D.K., Kumaraswamidhas, L.A., Das, S., 2017, “Technical Overview of Aluminum Alloy Foam”, Review Advanced Materials Science, Vol. 48, pp. 68-86.
  • Ramamurty, U., Paul, A., 2004, “Variability in mechanical properties of a metal foam”, Acta Materialia, Vol. 52, pp. 869–876.
  • Rohatgi, P., 2011, "The synthesis, compressive properties, and applications of metal matrix syntactic foams", Journal of Materials, Vol. 63(2), pp. 36-42.
  • Salerno, A., Netti, P. A., 2014, "Introduction to biomedical foams." Biomedical Foams for Tissue Engineering Applications, pp. 3-39.
  • Santa Maria, J.A., Schultz, B.F., Ferguson, J.B., Rohatgi, P.K., 2013, “Al–Al2O3 syntactic foams – Part I: Effect of matrix strength and hollow spheresize on the quasi-static properties of Al-A206/Al2O3 syntactic foams”, Materials Science & Engineering A, Vol. 582, pp. 415–422.
  • Singh, S., Bhatnagar, N., “A Survey of Fabrication and Application of Metallic Foams (1925-2107)”, Journal of Porous Materials, Vol. 25, pp. 537-554.
  • Sobczak, J., 2003, “High Porosity Media for Transportation – Selected Aspects”, Journal of KONES Internal Combustion Engines, Vol. 10, pp. 34-42.
  • Srıvastava,V.C., Sahoo, K.L., 2007, Processing, Stabilization and Applications of Metallic Foams. Art of Science, Materials Science-Poland, 25, 733-753.
  • Su, L., 2019, "Experimental study on the closed-cell aluminum foam shock absorption layer of a high-speed railway tunnel", Soil Dynamics and Earthquake Engineering, Vol. 119, pp. 331-345.
  • Su, M., Wang, H., Hao, H., Fiedler, T., 2019, “Compressive Properties of Expanded Glass and Alumina Hollow Spheres Hybrid Reinforced Aluminum Matrix Syntactic Foams”, Journal of Alloys and Compounds, Vol. 821, pp. 1-11.
  • Sun, D.X., Zhao, Y.Y., 2003, “Static and Dynamic Energy Absorption of Al Foams Produced by the Sintering and Dissolution Process”, Metallurgical and Materials Transactions B, Vol. 34(1), pp 69– 74.
  • Szlancsik, A., Katona, B., Bobor, K., Májlinger, K., Orbulov, I. N., 2015, “Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres”, Materials & Design, Vol. 83, pp. 230-237.
  • Taherishargh, M., Sulong, M. A., Belova, I. V., Murch, G. E., Fiedler, T., 2015, “On the particle size effect in expanded perlite aluminum syntactic foam”, Materials & Design, Vol. 66, pp. 294-303.
  • Tao, X. F., Zhang, L. P., Zhao, Y. Y., 2009, “Al matrix syntactic foam fabricated with bimodal ceramic microspheres”, Materials & Design, Vol. 30(7), pp. 2732-2736.
  • Vinay, B.U., Sreenivas Rao, K.V., 2012, “Development of Aluminum Foams by Different Methods and Evaluation of its Density by Archimedes Principle”, Bonfring International Journal of Industrial Engineering and Management Science, Vol. 2(4), 541-549.
  • Yamada, Y., Shimojima, K., Sakaguchi, Y., Mabuchi, M., Nakamura, M., Asahina, T., Mukai, T., Kanahashi, H., Higashi, K., 2000, “Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure”, Advanced Engineering Materials, 2000; Vol. 2, pp. 184- 191.
  • Yavuz, İ., 2010, “Metalik Köpük Malzemeler ve Uygulama Alanları”, Taşıt Teknolojileri Elektronik Dergisi, Vol. 1, pp. 49-58.
  • Yu, J., Wang, E., Li, J., Zheng, Z., 2008, “Static and low-velocity impact behavior of sandwich beams closed- cell aluminum-foam core in three-point bending”, International Journal of Impact Engineering, Vol. 5, pp. 885–894.
  • Zhang, L. P, Tao, X.F., Zhao Y.Y., 2009, “Al matrix syntactic foam fabricated with bimodal ceramic microspheres”, Materials and Design, Vol. 30, pp. 2732–2736.
  • Zhang, L.P., Zhao, Y.Y., 2007, “Mechanical Response of Al Matrix Syntactic Foams Produced by Pressure Infiltration Casting”, Journal of Composite Materials, Vol. 41.
  • Zhao, Y.Y., Fung, T., Zhang, L.P., Zhang, F.L., 2005, “Lost carbonate sintering process for manufacturing metal foams”, Scripta Materialia, Vol. 52, pp. 295–298.
  • Zhu, H. X., Windle, A. H., 2002, “Effects of cell irregularity on the high strain compression of open-cell foams”, Acta Materialia, Vol. 50, pp. 1041–1052.

Manufacturing of Expanded Glass Reinforced Syntactic Foam Metal and Investigation of Microstructure and Mechanical Properties

Year 2020, Volume: 8 Issue: 4, 798 - 811, 01.12.2020
https://doi.org/10.36306/konjes.731271

Abstract

In this study Syntactic Foam Metals (SFM), which are a developed structure of foam metals, is manufactured and analyzed. SFM are materials with porous structure formed by using hollow ceramic spheres. SFM have a closed cell structure and is a kind of composite. As matrix metal 7075 aluminum and as reinforced material expanded glass is used. Advantages of SFM is lightness, high compression strength, vibration and shock absorbing characteristics. In this study as manufacturing method, liquid infiltration is used. By this method, the mold and spheres are heated in a furnace up to 800 ˚C. Later glass spheres and mold are taken out from the furnace, glass spheres and molten aluminum are placed inside the mold cavity and a casting pressure of 6,3 kPa is applied. Afterwards inner structure was analyzed and concluded that glass spheres were not broken and were homogenous dispersed inside the specimen. Arshimed principle was used to determine the density of 25 mm diameter and 33 mm height cylindrical specimens. The density was 1,33-1,68 g/cm3. Porosity is calculated between 53,3-57,2%. Compression tests were performed to analyze mechanical performance and a typical plateau stress was observed as seen by different SFM’s. The plateau stress value was 22-42 MPa and shock absorbing energy 12-22 MJ/m3. These values are accommodating with the values in the literature. Also linear relation was correlated between the plateau stress value and shock absorbing energy.

Project Number

MYL-2018-41050

References

  • Altenaiji, M., Schleyer G.K., Zhao, Y.Y., 2012, “Characterization of Aluminum Matrix Syntactic Foams Under Static and Dynamic Loading, Composites and Their Properties”, IntechOpen, DOI: 10.5772/48560.
  • Al-Sahlani, K., Kisi, E., Fiedler, T., 2019, “Impact of Particle Strength and Matrix Ductility on the Deformation Mechanism of Metallic Syntactic Foam“, Journal of Alloys and Compounds, Vol. 786, pp. 292-299.
  • Asavavisithchai, S., Nisaratanaporn, E., 2010, “Fabrication of Open-Cell Silver Foams Using Disaccharide as Space Holders”, Journal of Science,; Vol.37(2), pp. 222-230.
  • Balch, D. K., Dunand, D. C., 2006, “Load partitioning in aluminum syntactic foams containing ceramic microspheres”, Acta Materialia, Vol. 54(6), pp. 1501-1511.
  • Banhart, J., 2000, "Manufacturing routes for metallic foams", Journal of Metals, Vol. 52(12), pp. 22-27.
  • Banhart, J., 2001, “Manufacture, characterization and application of cellular metals and metal foams”, Progress in Materials Science, Vol.46, pp. 559–632.
  • Banhart, J., 2003, “Aluminum Foams for Lighter Vehicles”, International Journal of Vehicle Design, pp. 1-19. Banhart, J., Ashby, M. F., Fleck, N., 1999, “Metal foams and porous metal structures ‟, Metal Innovation Technologie, Vol. 83, pp. 255-262.
  • Banhart, J., Weaire, D., 2002, “On the road again: metal foams find favor‟, Physics Today, Vol. 55, pp.37-42. Castro, G., Nutt, S.R., 2012, “Synthesis of syntactic steel foam using mechanical pressure infiltration”, Materials Science and Engineering A, Vol. 535, pp. 274– 280.
  • Claar, T. D., 2000, "Ultra-lightweight aluminum foam materials for automotive applications." SAE transactions, pp. 98-106.
  • Daoud, A., El-Khair, M. A., Abdel-Aziz, M., Rohatgi, P., 2007, “Fabrication, microstructure and compressive behavior of ZC63 Mg–microballoon foam composites”, Composites Science and Technology, Vol. 67(9), pp. 1842-1853.
  • Degischer, H.P., Kriszt,B., 2002, “Handbook of Cellular Metals, Production, Processing and Applications”, Wiley-VCH, ISBN 3-527-29320-5.
  • Dorian, K., Balcha, J., O’Dwyerb, G., Davisc, R., Cadyd, C.M., Gray, G.T., Dunanda, D.C., 2005, “Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions”, Materials Science and Engineering A, Vol. 391, pp. 408–417.
  • Duarte, I., Ferreira M.F., 2016, “Composite and Nanocomposite Metal Foams”, Materials, Vol. 9 (79), 1-34. Fiedler, T., Nima Movahedi, York, L., Broxtermann, S., 2020, “Functionally-Graded Metallic Syntactic Foams Produced via Particle Pre-Compaction, Metals, Vol. 10, pp. 312-324.
  • Gauckler, L.J., Waeber, M.M., Conti, C., Duliere, J. M., 1985, “Ceramic Foam for Molten Metal Filtration”, Journal of Metals, September.
  • Hai-jun, Y., Guang-chun, Y., Xiao-lin, W., 2007, “Sound insulation property of Al-Si closed-cell aluminum foam bare board material”, Transactions of nonferrous metals society, Vol. 17, pp. 93–98.
  • Hintz, C., 2000, „Mechanische und tribologische Eigenschaften präzisionsgegossener Schwämme und Werkstoffverbunde", Materialwissenschaften und Werkstofftechnik, Vol. 31(6), pp.574-581.
  • Hipke, T., Hohlfeld, J., Rybandt, S., 2014, "Functionally aluminum foam composites for building industry", Procedia Materials Science, Vol.4, pp. 133-138.
  • Huo, D., Yang, J., Zhou, X., Wang, H., Zhang, T., 2012, “Preparation of open-celled aluminum foams by counter-gravity infiltration casting”, Trans. Nonferrous Met. Soc. China, Vol. 22, pp. 85-89.
  • Jakubowicz, J., Adamek, G., Dewidar, M., 2013, “Titanium foam made with saccharose as a space holder”, Journal of Porous Materials, Vol. 20, pp. 1137–1141.
  • Jinnapat, A., Kennedy, A.R., 2010, “The manufacture of spherical salt beads and their use as dissolvable templates for the production of cellular solids via a powder metallurgy route”, Journal of Alloys and Compounds, Vol. 499, pp. 43-47.
  • Kenesei, P., Kadar, C., Rajkovits, Z., Lendvai, J., 2004, “The influence of cell size distribution on the plastic deformation in metal foams”, Scripta Materialia, Vol. 50, pp. 295–300.
  • Kheradmand, B., Otroj, S., Soleimanpour, Z., Beigyfar, M., 2013, “Comparison between methods used for manufacturing of aluminum foam”, Life Science Journal, Vol. 10.
  • Kiratisaevee, H., Cantwell, W, 2005, “Low-velocity Impact Response of High-performance Aluminum Foam Sandwich Structures”, Journal of Reinforced Plastics and Composite, Vol. 24(10), pp. 1057- 1072.
  • Lehmhusa, D., Weiseb, J., Baumeisterb, J., Peronic, L., Scapinc, M., Ficherac, C., Avallec, M., Bussea, M., 2014, “Quasi-static and dynamic mechanical performance of glass microsphere- and cenosphere- based 316L syntactic foams”, Procedia Materials Science, Vol. 4, pp. 383 – 387.
  • Lin, Y., Zhang, Q., Ma, X., Wu, G., 2016, “Mechanical behavior of pure Al and Al–Mg syntactic foam composites containing glass cenospheres”, Composites: Part A, Vol. 87, pp. 194–202.
  • Manakari, V., 2019, "Evaluation of wear resistance of magnesium/glass microballoon syntactic foams for engineering/biomedical applications." Ceramics International, Vol.11.
  • Mondal, D. P., 2012, "Titanium-cenosphere syntactic foam made through powder metallurgy route", Materials & Design, Vol. 34, pp. 82-89.
  • Mondal, D. P., Das, S., Ramakrishnan, N., Bhasker, K. U., 2009, “Cenosphere filled aluminum syntactic foam made through stir-casting technique”, Composites Part A: Applied Science and Manufacturing, Vol. 40(3), pp. 279-288.
  • Neikov, O., 2019, “Handbook of Non-Ferrous Metal Powders – Technologies and Applications”, 2nd Edition, Elsevier.
  • Nie, Z., Lin, Y., Tong, Q., 2018, "Numerical simulations of two-phase flow in open-cell metal foams with application to aero-engine separators", International Journal of Heat and Mass Transfer, Vol. 127 pp. 917-932.
  • Onofrio, L., Barletta, D., Dimiccoli, V., 2010, "A wide-frequency model of metal foam for shielding applications", IEEE Transactions on Electromagnetic Compatibility, Vol. 52(1), pp. 75-81.
  • Orbulov, I. N., 2012, “Compressive properties of aluminum matrix syntactic foams”, Materials Science and Engineering: A, Vol. 555, pp. 52-56.
  • Orbulov, I.N., 2011, “Syntactic foams produced by pressure infiltration – the effect of pressure and time on infiltration length”, Mechanical Engineering, Vol. 55(1), pp. 21–27.
  • Ozan, S., Katı, N., 2011, 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkey.
  • Pan, L., 2018, "Zn-Matrix Syntactic Foams: Effect of Heat Treatment on Microstructure and Compressive Properties”, Materials Science and Engineering: A), Vol.7.
  • Pan, L., Yang, Y., Ahsan, M. U., Luong, D. D., Gupta, N., Kumar, A., Rohatgi, P. K., 2018, “Zn-matrix syntactic foams: Effect of heat treatment on microstructure and compressive properties”, Materials Science and Engineering: A, Vol. 731, pp. 413-422.
  • Polat, D., Keleş, Ö., Taptık, Y., 2010, “Metalik Köpükler, Alüminyum Metalik Köpük ve Üretim Yöntemleri” Metal Dünyası, Vol. 54.
  • Rabiei, A., Neville, B., Reese, N., Vendra, L., 2007, “New Composite Metal Foams Under Compressive Cyclic Loadings”, Materials Science Forum, Vols. 539-543, pp. 1868-1873.
  • Rabiei, A., Vendra, L., Reese, N., Young, N., Neville, P, Processing and Characterization of a New Composite Metal Foam, Materials Transactions, Vol. 47, No. 9 (2006) pp. 2148 to 2153.
  • Rajak, D.K., Kumaraswamidhas, L.A., Das, S., 2017, “Technical Overview of Aluminum Alloy Foam”, Review Advanced Materials Science, Vol. 48, pp. 68-86.
  • Ramamurty, U., Paul, A., 2004, “Variability in mechanical properties of a metal foam”, Acta Materialia, Vol. 52, pp. 869–876.
  • Rohatgi, P., 2011, "The synthesis, compressive properties, and applications of metal matrix syntactic foams", Journal of Materials, Vol. 63(2), pp. 36-42.
  • Salerno, A., Netti, P. A., 2014, "Introduction to biomedical foams." Biomedical Foams for Tissue Engineering Applications, pp. 3-39.
  • Santa Maria, J.A., Schultz, B.F., Ferguson, J.B., Rohatgi, P.K., 2013, “Al–Al2O3 syntactic foams – Part I: Effect of matrix strength and hollow spheresize on the quasi-static properties of Al-A206/Al2O3 syntactic foams”, Materials Science & Engineering A, Vol. 582, pp. 415–422.
  • Singh, S., Bhatnagar, N., “A Survey of Fabrication and Application of Metallic Foams (1925-2107)”, Journal of Porous Materials, Vol. 25, pp. 537-554.
  • Sobczak, J., 2003, “High Porosity Media for Transportation – Selected Aspects”, Journal of KONES Internal Combustion Engines, Vol. 10, pp. 34-42.
  • Srıvastava,V.C., Sahoo, K.L., 2007, Processing, Stabilization and Applications of Metallic Foams. Art of Science, Materials Science-Poland, 25, 733-753.
  • Su, L., 2019, "Experimental study on the closed-cell aluminum foam shock absorption layer of a high-speed railway tunnel", Soil Dynamics and Earthquake Engineering, Vol. 119, pp. 331-345.
  • Su, M., Wang, H., Hao, H., Fiedler, T., 2019, “Compressive Properties of Expanded Glass and Alumina Hollow Spheres Hybrid Reinforced Aluminum Matrix Syntactic Foams”, Journal of Alloys and Compounds, Vol. 821, pp. 1-11.
  • Sun, D.X., Zhao, Y.Y., 2003, “Static and Dynamic Energy Absorption of Al Foams Produced by the Sintering and Dissolution Process”, Metallurgical and Materials Transactions B, Vol. 34(1), pp 69– 74.
  • Szlancsik, A., Katona, B., Bobor, K., Májlinger, K., Orbulov, I. N., 2015, “Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres”, Materials & Design, Vol. 83, pp. 230-237.
  • Taherishargh, M., Sulong, M. A., Belova, I. V., Murch, G. E., Fiedler, T., 2015, “On the particle size effect in expanded perlite aluminum syntactic foam”, Materials & Design, Vol. 66, pp. 294-303.
  • Tao, X. F., Zhang, L. P., Zhao, Y. Y., 2009, “Al matrix syntactic foam fabricated with bimodal ceramic microspheres”, Materials & Design, Vol. 30(7), pp. 2732-2736.
  • Vinay, B.U., Sreenivas Rao, K.V., 2012, “Development of Aluminum Foams by Different Methods and Evaluation of its Density by Archimedes Principle”, Bonfring International Journal of Industrial Engineering and Management Science, Vol. 2(4), 541-549.
  • Yamada, Y., Shimojima, K., Sakaguchi, Y., Mabuchi, M., Nakamura, M., Asahina, T., Mukai, T., Kanahashi, H., Higashi, K., 2000, “Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure”, Advanced Engineering Materials, 2000; Vol. 2, pp. 184- 191.
  • Yavuz, İ., 2010, “Metalik Köpük Malzemeler ve Uygulama Alanları”, Taşıt Teknolojileri Elektronik Dergisi, Vol. 1, pp. 49-58.
  • Yu, J., Wang, E., Li, J., Zheng, Z., 2008, “Static and low-velocity impact behavior of sandwich beams closed- cell aluminum-foam core in three-point bending”, International Journal of Impact Engineering, Vol. 5, pp. 885–894.
  • Zhang, L. P, Tao, X.F., Zhao Y.Y., 2009, “Al matrix syntactic foam fabricated with bimodal ceramic microspheres”, Materials and Design, Vol. 30, pp. 2732–2736.
  • Zhang, L.P., Zhao, Y.Y., 2007, “Mechanical Response of Al Matrix Syntactic Foams Produced by Pressure Infiltration Casting”, Journal of Composite Materials, Vol. 41.
  • Zhao, Y.Y., Fung, T., Zhang, L.P., Zhang, F.L., 2005, “Lost carbonate sintering process for manufacturing metal foams”, Scripta Materialia, Vol. 52, pp. 295–298.
  • Zhu, H. X., Windle, A. H., 2002, “Effects of cell irregularity on the high strain compression of open-cell foams”, Acta Materialia, Vol. 50, pp. 1041–1052.
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Büşra Şahin This is me 0000-0002-9979-4933

Ali Göksenli 0000-0002-1068-8705

Project Number MYL-2018-41050
Publication Date December 1, 2020
Submission Date May 5, 2020
Acceptance Date July 9, 2020
Published in Issue Year 2020 Volume: 8 Issue: 4

Cite

IEEE B. Şahin and A. Göksenli, “GENLEŞTİRİLMİŞ CAM TAKVİYELİ SİNTAKTİK KÖPÜK METALİN ÜRETİMİ, İÇYAPI VE MEKANİK ÖZELLİKLERİN İNCELENMESİ”, KONJES, vol. 8, no. 4, pp. 798–811, 2020, doi: 10.36306/konjes.731271.