Araştırma Makalesi
BibTex RIS Kaynak Göster

ELECTRICAL AND THERMAL CONDUCTIVITIES OF IRON (II, III) OXIDE ADDED RIGID POLYURETHANE FOAM NANOCOMPOSITES

Yıl 2021, Cilt: 9 Sayı: 1, 205 - 215, 02.03.2021
https://doi.org/10.36306/konjes.782105

Öz

Effect of iron (II, III) oxide particles on the electrical and thermal conductivities and thermal transitions of rigid polyurethane foams, and hence on the final density and microstructure of these porous materials were investigated. The microstructure study of iron (II, III) oxide added rigid polyurethane foam nanocomposites indicated a drop by 27% of the mean cell size from 294 µm for the neat polyurethane to 215 µm for a filler content of 50wt.% and an increase of the mean strut thickness as a function of the filler content. The thermal transition results demonstrated that as the magnetite content rises a visible decrease by 32% of the glass transition temperature appears in the case of soft segments when the glass transition temperature representing hard segments remains constant. Results of the electrical conductivity measurements showed a significant increase by 17% up to the higher filler content of 50wt.% compared to the unfilled polyurethane foam. The thermal conductivity results of iron (II, III) oxide added rigid polyurethane foam nanocomposites revealed a thermal insulating effect of magnetite particles due to the decrease of the thermal conductivity and stabilization after a slight rise from 0.02431W/m.K to 0.02648W/m.K depicted for a filler amount of 4wt.%.

Teşekkür

Kimteks/Turkey is gratefully acknowledged for the supply of polyol and isocyanate.

Kaynakça

  • Akkoyun, M., Akkoyun, S., 2019 "Blast furnace slag or fly ash filled rigid polyurethane composite foams: A comprehensive investigation", Journal of Applied Polymer Science, Vol. 136, pp. 47433.
  • Akkoyun, M., Suvaci, E., 2016 "Effects of TiO2, ZnO, and Fe3O4 nanofillers on rheological behavior, microstructure, and reaction kinetics of rigid polyurethane foams", Journal of Applied Polymer Science, Vol. 133, pp. 43658.
  • Alavi Nikje, M. M., Akbar, R., Ghavidel, R., Vakili, M., 2015a, "Preparation and Characterization of Magnetic Rigid Polyurethane Foam Reinforced with Dipodal Silane Iron Oxide Nanoparticles Fe3O4@APTS/GPTS", Cellular Polymers, Vol. 34, No. 3, pp. 137-156.
  • Alavi Nikje, M. M., Farahmand Nejad, M. A., Shabani, K., Haghshenas, M., 2013, "Preparation of magnetic polyurethane rigid foam nanocomposites", Colloid and Polymer Science, Vol. 291, pp. 903–909.
  • Alavi Nikje, M. M., Noruzian, M., Moghaddam, T. S., 2015b, "Novel Polyurethane Rigid Foam/Organically Modified Iron oxide Nanocomposites", Polymer Composites, Vol. 38, No. 5, pp. 877-883.
  • Almanza, O. A., Rodriguez-Perez, M. A., de Saja, J. A., 2000, "Prediction of the Radiation Term in the Thermal Conductivity of Crosslinked Closed Cell Polyolefin Foams", Journal of Polymer Science: Part B: Polymer Physics, Vol. 38, pp. 993-1004.
  • Baferani, A. H., Katbab, A. A., Ohadi, A. R., 2017, "The role of sonication time upon acoustic wave absorption efficiency, microstructure, and viscoelastic behavior of flexible polyurethane/CNT nanocomposite foam" European Polymer Journal, Vol. 90, pp. 383–391.
  • Caba, V., Borgese, L., Agnelli, S., Depero, L. E., 2019, "A green and simple process to develop conductive polyurethane foams forbiomedical applications", International Journal of Polymeric Materials andPolymeric Biomaterials, Vol. 68, pp. 126–133.
  • Chattopadhyay, D. K., Webster, D. C., 2009, "Thermal stability and flame retardancy of polyurethanes", Progress in Polymer Science, Vol. 34, No. 10, pp. 1068–1133.
  • Chen, L., Rende, D., Schadler, L. S., Ozisik, R., 2013, "Polymer nanocomposite foams", Journal of Materials Chemistry A, Vol. 1, pp. 3837.
  • Chen, Y., Huang, X., Gong, Z., Xu, C., Mou, W., 2017, "Fabrication of High Performance Magnetic Rubber from NBR and Fe3O4 via in Situ Compatibilization with Zinc Dimethacrylate", Industrial & Engineering Chemistry Research, Vol. 56, No. 1, pp. 183–190.
  • Ghariniyat, P., Leung, S. N., 2018, "Development of thermally conductive thermoplastic polyurethane composite foams via CO2 foaming-assisted filler networking", Composits Part B: Engineering, Vol. 143, pp. 9-18.
  • Gu, S.-Y., Liu, L.-L., Yan, B., 2014, "Effects of ionic solvent-free carbon nanotube nanofluid on the properties of polyurethane thermoplastic elastomer", Journal of Polymer Research, Vol. 21, pp. 356.
  • Han , X., Koelling, K., Tomasko, D., Lee, L., 2002, "Continuous microcellular polystyrene foam extrusion with supercritical CO2", Polymer Engineering and Science, Vol. 42, pp. 2094.
  • Ibeh, C. C., Bubacz, M., 2008, "Current Trends in Nanocomposite Foams", Journal of Cellular Plastics, Vol. 44, No. 6, pp. 493-515.
  • Kang, M. J., Kim, Y. H., Park, G. P., Han, M. S., Kim, W. N., Park, S. D., 2010, "Liquid nucleating additives for improving thermal insulating properties and mechanical strength of polyisocyanurate foams", Journal of Materials Science, Vol. 45, pp. 5412–5419.
  • Król, P., Król, B., Pielichowska, K., Špírková, M., 2015, "Composites prepared from the waterborne polyurethane cationomers-modified graphene. Part I. Synthesis, structure, and physicochemical properties", Colloid and Polymer Science, Vol. 293, pp. 421–431.
  • Lee, L. J., Zeng, C., Cao, X., Han, X., Shen, J., Xu, G., 2005, "Polymer nanocomposite foams", Composites Science and Technology, Vol. 65, pp. 344–2363.
  • Lee, S.-T., Ramesh, N. S., 2004, "Polymeric foams: mechanisms and materials", Boca Raton: CRC Press.
  • Lee, Y., Jang, M. G., Choi, K. H., Han, C., Kim, W. N., 2016, "Liquid-type nucleating agent for improving thermal insulating properties of rigid polyurethane foams by HFC-365mfc as a blowing agent", Journal of Applied Polymer Science, Vol. 133, pp. 43557.
  • Lorusso, C., Vergaro, V., Conciauro, F., Ciccarella, G., Congedo, P., 2017, "Thermal and mechanical performance of rigid polyurethane foam added with commercial nanoparticles", Nanomaterials and Nanotechnology, Vol. 7, pp. 1–9.
  • Ma, X., Shi, C., Huang, X., Liu, Y., Wei, Y., 2019, “Effect of natural melanin nanoparticles on a self-healing cross-linked polyurethane”, Polymer Journal, Vol. 51, pp. 547-558.
  • Moghaddam, S. T., Naimi-Jamal, R. M., 2018, "Reinforced magnetic polyurethane rigid (PUR) foam nanocomposites and investigation of thermal, mechanical, and sound absorption properties", Journal of Thermoplastic Composite Materials, Vol. 32, No. 9, pp. 1224-1241.
  • Paciorek-Sadowska, J., Borowicz, M., Isbrandt, M., Czuprynski, B., Apiecionek, L., 2019, "The Use of Waste from the Production of Rapeseed Oil for Obtaining of New Polyurethane Composites", Polymers, Vol. 11, pp. 1431.
  • Patcharapon, S., Kalman, M., Timea, L.-K., Csaba, K., 2018, "Polyurethane elastomers with improved thermal conductivity part I: elaborating matrix material for thermal conductive composites", International Journal of Mechanical and Production Engineering, Vol. 6, pp. 2320-2092.
  • Pillai, P. K., Li, S., Bouzidi, L., Narine, S. S., 2015, "Metathesized palm oil polyol for the preparation of improvedbio-based rigid and flexible polyurethane foams", Industrial Crops and Products, Vol. 83, pp. 568-576.
  • Saha, M. C., Kabir, M. E., Jeelani, S., 2008, "Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles", Materials Science and Engineering: A, Vol. 479, No. 1-2, pp. 213-222.
  • Saha, M. C., Mahfuz, H., Chakravarty, U. K., Uddin, M., Kabir, M. E., Jeelani, S., 2005, "Effect of density, microstructure, and strain rate on compression behavior of polymeric foams", Materials Science and Engineering, Vol. 406, pp. 328–336.
  • Sattar, R., Kausar, A., Siddiq, M., 2015, "Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review", Journal of Plastic Film & Sheeting, Vol. 31, No. 2, pp. 86–224.
  • Silva, A. M., Pereira, I. M., Silva, T. I., da Silva, M. R., Rocha, R. A., Silva, M. C., 2020, "Magnetic foams from polyurethane and magnetite applied as attenuators of electromagnetic radiation in X band", Journal of Applied Polymer Science, pp. 49629.
  • Usman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., Zia, F., 2016, "Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications", International Journal of Biological Macromolecules, Vol. 86, pp. 630–645.
  • Wilkes, G. L., Wildnauer, R., 1975, "Kinetic behavior of the thermal and mechanical properties of segmented urethanes", Journal of Applied Physics, Vol. 46, pp. 4148.
  • Zhang, G., Zhang, S., Qiu, J., Jiang, Z., Xing, H., Li, M., Tang, T., 2017, "Insight into the influence of OA- Fe3O4 nanoparticles on the morphology and scCO2 batch-foaming behavior of cocontinuous LLDPE/PS immiscible blends at semi-solid state", Polymer, Vol. 129, pp. 169-178.

Demir (II, III) Oksit Katkılı Rijit Poliüretan Köpük Nanokompozitlerin Elektriksel ve Termal İletkenlikleri

Yıl 2021, Cilt: 9 Sayı: 1, 205 - 215, 02.03.2021
https://doi.org/10.36306/konjes.782105

Öz

Demir (II, III) oksit partiküllerinin rijit poliüretan köpüklerin elektrik ve termal iletkenlikleri ile termal geçişlerine ve dolayısıyla bu gözenekli malzemelerin nihai yoğunluğu ve mikroyapısına etkisi araştırılmıştır. Demir (II, III) oksit eklenmiş rijit poliüretan köpük nanokompozitlerin mikroyapı çalışması, ortalama hücre boyutunun katkısız poliüretan için 294 µm değerinden ağırlıkça %50 katkılı köpük için 215 µm değerine kadar, %27 oranında bir düşüş ve katkı oranına bağlı olarak ortalama duvar kalınlığında bir artış olduğunu göstermiştir. Termal geçiş sonuçları, magnetit oranı arttıkça yumuşak segmentler için camsı geçiş sıcaklığında %32 oranında gözle görülür bir düşüşün ortaya çıktığını ve sert segmentleri temsil eden camsı geçiş sıcaklığının sabit kaldığını göstermiştir. Elektriksel iletkenlik ölçümlerinin sonuçları, katkısız poliüretan köpüğe kıyasla ağırlıkça %50 katkı oranına kadar %17 oranında önemli bir artış göstermiştir. Demir (II, III) oksit eklenmiş rijit poliüretan köpük nanokompozitlerin termal iletkenlik sonuçları, ağırlıkça %4 katkı oranı için 0.02431W/m.K değerinden 0.02648W/m.K değerine kadar gözlemlenen hafif bir artıştan sonra termal iletkenliğin azalması ve stabilizasyonu nedeniyle manyetit parçacıklarının ısıl yalıtım etkisini ortaya çıkarmıştır.

Kaynakça

  • Akkoyun, M., Akkoyun, S., 2019 "Blast furnace slag or fly ash filled rigid polyurethane composite foams: A comprehensive investigation", Journal of Applied Polymer Science, Vol. 136, pp. 47433.
  • Akkoyun, M., Suvaci, E., 2016 "Effects of TiO2, ZnO, and Fe3O4 nanofillers on rheological behavior, microstructure, and reaction kinetics of rigid polyurethane foams", Journal of Applied Polymer Science, Vol. 133, pp. 43658.
  • Alavi Nikje, M. M., Akbar, R., Ghavidel, R., Vakili, M., 2015a, "Preparation and Characterization of Magnetic Rigid Polyurethane Foam Reinforced with Dipodal Silane Iron Oxide Nanoparticles Fe3O4@APTS/GPTS", Cellular Polymers, Vol. 34, No. 3, pp. 137-156.
  • Alavi Nikje, M. M., Farahmand Nejad, M. A., Shabani, K., Haghshenas, M., 2013, "Preparation of magnetic polyurethane rigid foam nanocomposites", Colloid and Polymer Science, Vol. 291, pp. 903–909.
  • Alavi Nikje, M. M., Noruzian, M., Moghaddam, T. S., 2015b, "Novel Polyurethane Rigid Foam/Organically Modified Iron oxide Nanocomposites", Polymer Composites, Vol. 38, No. 5, pp. 877-883.
  • Almanza, O. A., Rodriguez-Perez, M. A., de Saja, J. A., 2000, "Prediction of the Radiation Term in the Thermal Conductivity of Crosslinked Closed Cell Polyolefin Foams", Journal of Polymer Science: Part B: Polymer Physics, Vol. 38, pp. 993-1004.
  • Baferani, A. H., Katbab, A. A., Ohadi, A. R., 2017, "The role of sonication time upon acoustic wave absorption efficiency, microstructure, and viscoelastic behavior of flexible polyurethane/CNT nanocomposite foam" European Polymer Journal, Vol. 90, pp. 383–391.
  • Caba, V., Borgese, L., Agnelli, S., Depero, L. E., 2019, "A green and simple process to develop conductive polyurethane foams forbiomedical applications", International Journal of Polymeric Materials andPolymeric Biomaterials, Vol. 68, pp. 126–133.
  • Chattopadhyay, D. K., Webster, D. C., 2009, "Thermal stability and flame retardancy of polyurethanes", Progress in Polymer Science, Vol. 34, No. 10, pp. 1068–1133.
  • Chen, L., Rende, D., Schadler, L. S., Ozisik, R., 2013, "Polymer nanocomposite foams", Journal of Materials Chemistry A, Vol. 1, pp. 3837.
  • Chen, Y., Huang, X., Gong, Z., Xu, C., Mou, W., 2017, "Fabrication of High Performance Magnetic Rubber from NBR and Fe3O4 via in Situ Compatibilization with Zinc Dimethacrylate", Industrial & Engineering Chemistry Research, Vol. 56, No. 1, pp. 183–190.
  • Ghariniyat, P., Leung, S. N., 2018, "Development of thermally conductive thermoplastic polyurethane composite foams via CO2 foaming-assisted filler networking", Composits Part B: Engineering, Vol. 143, pp. 9-18.
  • Gu, S.-Y., Liu, L.-L., Yan, B., 2014, "Effects of ionic solvent-free carbon nanotube nanofluid on the properties of polyurethane thermoplastic elastomer", Journal of Polymer Research, Vol. 21, pp. 356.
  • Han , X., Koelling, K., Tomasko, D., Lee, L., 2002, "Continuous microcellular polystyrene foam extrusion with supercritical CO2", Polymer Engineering and Science, Vol. 42, pp. 2094.
  • Ibeh, C. C., Bubacz, M., 2008, "Current Trends in Nanocomposite Foams", Journal of Cellular Plastics, Vol. 44, No. 6, pp. 493-515.
  • Kang, M. J., Kim, Y. H., Park, G. P., Han, M. S., Kim, W. N., Park, S. D., 2010, "Liquid nucleating additives for improving thermal insulating properties and mechanical strength of polyisocyanurate foams", Journal of Materials Science, Vol. 45, pp. 5412–5419.
  • Król, P., Król, B., Pielichowska, K., Špírková, M., 2015, "Composites prepared from the waterborne polyurethane cationomers-modified graphene. Part I. Synthesis, structure, and physicochemical properties", Colloid and Polymer Science, Vol. 293, pp. 421–431.
  • Lee, L. J., Zeng, C., Cao, X., Han, X., Shen, J., Xu, G., 2005, "Polymer nanocomposite foams", Composites Science and Technology, Vol. 65, pp. 344–2363.
  • Lee, S.-T., Ramesh, N. S., 2004, "Polymeric foams: mechanisms and materials", Boca Raton: CRC Press.
  • Lee, Y., Jang, M. G., Choi, K. H., Han, C., Kim, W. N., 2016, "Liquid-type nucleating agent for improving thermal insulating properties of rigid polyurethane foams by HFC-365mfc as a blowing agent", Journal of Applied Polymer Science, Vol. 133, pp. 43557.
  • Lorusso, C., Vergaro, V., Conciauro, F., Ciccarella, G., Congedo, P., 2017, "Thermal and mechanical performance of rigid polyurethane foam added with commercial nanoparticles", Nanomaterials and Nanotechnology, Vol. 7, pp. 1–9.
  • Ma, X., Shi, C., Huang, X., Liu, Y., Wei, Y., 2019, “Effect of natural melanin nanoparticles on a self-healing cross-linked polyurethane”, Polymer Journal, Vol. 51, pp. 547-558.
  • Moghaddam, S. T., Naimi-Jamal, R. M., 2018, "Reinforced magnetic polyurethane rigid (PUR) foam nanocomposites and investigation of thermal, mechanical, and sound absorption properties", Journal of Thermoplastic Composite Materials, Vol. 32, No. 9, pp. 1224-1241.
  • Paciorek-Sadowska, J., Borowicz, M., Isbrandt, M., Czuprynski, B., Apiecionek, L., 2019, "The Use of Waste from the Production of Rapeseed Oil for Obtaining of New Polyurethane Composites", Polymers, Vol. 11, pp. 1431.
  • Patcharapon, S., Kalman, M., Timea, L.-K., Csaba, K., 2018, "Polyurethane elastomers with improved thermal conductivity part I: elaborating matrix material for thermal conductive composites", International Journal of Mechanical and Production Engineering, Vol. 6, pp. 2320-2092.
  • Pillai, P. K., Li, S., Bouzidi, L., Narine, S. S., 2015, "Metathesized palm oil polyol for the preparation of improvedbio-based rigid and flexible polyurethane foams", Industrial Crops and Products, Vol. 83, pp. 568-576.
  • Saha, M. C., Kabir, M. E., Jeelani, S., 2008, "Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles", Materials Science and Engineering: A, Vol. 479, No. 1-2, pp. 213-222.
  • Saha, M. C., Mahfuz, H., Chakravarty, U. K., Uddin, M., Kabir, M. E., Jeelani, S., 2005, "Effect of density, microstructure, and strain rate on compression behavior of polymeric foams", Materials Science and Engineering, Vol. 406, pp. 328–336.
  • Sattar, R., Kausar, A., Siddiq, M., 2015, "Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review", Journal of Plastic Film & Sheeting, Vol. 31, No. 2, pp. 86–224.
  • Silva, A. M., Pereira, I. M., Silva, T. I., da Silva, M. R., Rocha, R. A., Silva, M. C., 2020, "Magnetic foams from polyurethane and magnetite applied as attenuators of electromagnetic radiation in X band", Journal of Applied Polymer Science, pp. 49629.
  • Usman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., Zia, F., 2016, "Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications", International Journal of Biological Macromolecules, Vol. 86, pp. 630–645.
  • Wilkes, G. L., Wildnauer, R., 1975, "Kinetic behavior of the thermal and mechanical properties of segmented urethanes", Journal of Applied Physics, Vol. 46, pp. 4148.
  • Zhang, G., Zhang, S., Qiu, J., Jiang, Z., Xing, H., Li, M., Tang, T., 2017, "Insight into the influence of OA- Fe3O4 nanoparticles on the morphology and scCO2 batch-foaming behavior of cocontinuous LLDPE/PS immiscible blends at semi-solid state", Polymer, Vol. 129, pp. 169-178.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Meral Akkoyun 0000-0002-8113-5534

Yayımlanma Tarihi 2 Mart 2021
Gönderilme Tarihi 18 Ağustos 2020
Kabul Tarihi 8 Aralık 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 1

Kaynak Göster

IEEE M. Akkoyun, “ELECTRICAL AND THERMAL CONDUCTIVITIES OF IRON (II, III) OXIDE ADDED RIGID POLYURETHANE FOAM NANOCOMPOSITES”, KONJES, c. 9, sy. 1, ss. 205–215, 2021, doi: 10.36306/konjes.782105.