Research Article
BibTex RIS Cite

MAKSİMUM YÜKSELTİCİ KONTROLLÜ T-KAYNAK İNVERTERİN ANALİZİ

Year 2021, Volume: 9 Issue: 3, 753 - 765, 01.09.2021
https://doi.org/10.36306/konjes.970208

Abstract

Geleneksel akım ve gerilim kaynaklı inverterler, DC-AC güç dönüşümünde girişine uygulanan gerilimi yükseltmek için DC-DC dönüştürücü veya trafoya ihtiyaç duymaktadır. Bu ihtiyacı ortadan kaldırmak amacıyla son yıllarda sıklıkla kullanılan empedans kaynaklı inverter (ZSI) devresi önerilmiştir. ZSI devresi, sahip olduğu empedans katı ve kısa devre çalışabilme özelliği sayesinde DC giriş gerilim değerini istenilen değere dönüştürebilmektedir. Bu çalışmada, ZSI’nin dezavantajlarını ortadan kaldırarak daha verimli DC-AC güç dönüşümü yapabilen T-Kaynak inverter (TSI) devresi, Matlab/Simulink ortamında farklı devre parametreleri için incelenmiştir. TSI devresinin yapısı ve çalışma prensibi, ilgili denklemler kullanılarak teorik olarak açıklanmıştır. TSI devre yapısı, ZSI’de olduğu gibi aynı faz kolundaki anahtarlama elemanlarını kısa devre ederek DC giriş gerilimini yükseltme özelliğine sahiptir. Kullanılan modülasyon indeksine ve kısa devre görev oranına bağlı olarak, TSI devresi düşürücü-yükseltici olarak çalışabilmektedir. Güç katındaki anahtarlama elemanlarını sürmek için sinüzoidal PWM tabanlı maksimum yükseltici kontrol tekniği uygulanmıştır. TSI’nin belirli bir kısa devre çalışma oranında ve DC giriş gerilim değerinde; DC hat gerilimi, kondansatör ve AC çıkış gerilim değeri, ZSI devresi ile karşılaştırmalı olarak hesaplanmıştır. Benzetim çalışmaları ile teorik sonuçların örtüştüğü görülmüş, TSI devresinin ZSI’ye kıyasla daha az pasif devre elemanı kullanarak etkin şekilde DC-AC güç dönüşümü yapabileceği gösterilmiştir.

References

  • Adamowicz, M., Strzelecka, N., 2009, “T-source inverter”, Electrical Review, Cilt 85, Sayı 10, ss. 1-6.
  • Chen, Y., Smedley, K., 2008, "Three-Phase Boost-Type Grid-Connected Inverter," IEEE Transactions on Power Electronics, Cilt 23, Sayı 5, ss. 2301-2309.
  • Dong, S., Zhang, Q., Cheng, S., 2016, “Analysis and design of snubber circuit for Z‐source inverter applications”, IET Power Electronics, Cilt 9, Sayı 5, ss. 1083-1091.
  • Ebrahimi, S., Moghassemi, A., Olamaei, J., 2020, “PV inverters and modulation strategies: a review and a proposed control strategy for frequency and voltage regulation”, Signal Processing and Renewable Energy, Cilt 4, Sayı 1, ss. 1-21.
  • Ellabban, O., Abu-Rub, H., 2016, “Z-source inverter: Topology improvements review”, IEEE Industrial Electronics Magazine, Cilt 10, Sayı 1, ss. 6-24.
  • Endiz, M. S., Akkaya, R., 2020, “A Modified Quasi-Z-Source Inverter with Enhanced Performance Capability”, International Journal of Renewable Energy Research (IJRER), Cilt 10, Sayı 2, ss. 892- 897.
  • Estévez-Bén, A. A., Alvarez-Diazcomas, A., Rodríguez-Reséndiz, J., 2020, “Transformerless multilevel voltage-source inverter topology comparative study for PV systems”, Energies, Cilt 13, Sayı 12, ss. 3261.
  • Li, Y., Jiang, S., Cintron-Rivera, J. G., Peng, F. Z., 2012, “Modeling and control of quasi-Z-source inverter for distributed generation applications”, IEEE Transactions on Industrial Electronics, Cilt 60, Sayı 4, ss. 1532-1541.
  • Li, Y., Anderson, J., Peng, F. Z., Liu, D., 2009, “Quasi-Z-source inverter for photovoltaic power generation systems”, Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, ss. 918-924.
  • Liu, H., Zhou, B., Li, Y., Chen, J., Loh, P. C., 2020, “High-Efficiency T-Source Inverter With Low Voltage Spikes Across the Switch Bridge”, IEEE Transactions on Power Electronics, Cilt 35, Sayı 10, ss. 10554-10566.
  • Liu, W., Yuan, J., Yang, Y., Kerekes, T., 2018, “Modeling and control of single-phase quasi-Z-source inverters”, 44th Annual Conference of the IEEE Industrial Electronics Society, ss. 3737-3742.
  • Liu, W., Niazi, K. A. K., Kerekes, T., Yang, Y., 2019, “A review on transformerless step-up single-phase inverters with different dc-link voltage for photovoltaic applications”, Energies, Cilt 12, Sayı 19, ss. 3626.
  • Mande, D., Trovão, J. P., Ta, M. C., 2020, “Comprehensive review on main topologies of impedance source inverter used in electric vehicle applications”, World Electric Vehicle Journal, Cilt 11, Sayı 2, ss. 37.
  • Nguyen, M. K., Lim, Y. C., Cho, G. B., 2011, “Switched-inductor quasi-Z-source inverter”, IEEE Transactions on Power Electronics, Cilt 26, Sayı 11, ss. 3183-3191.
  • Peng, F.Z., 2003, “Z-Source Inverter”, IEEE Trans. on Industry Applications, Cilt 39, Sayı 2, ss. 504-510.
  • Sivaraman, P., Prem, P., 2017, “PR controller design and stability analysis of single stage T-source inverter based solar PV system”, Journal of the Chinese Institute of Engineers, Cilt 40, Sayı 3, ss. 235-245.
  • Strzelecki, R., Adamowicz, M., Strzelecka, N., Bury, W., 2009, “New type T-source inverter”, Compatibility and Power Electronics, ss. 191-195.
  • Tang, Y., Xie, S., Zhang, C., 2010, “Single-phase Z-source inverter”, IEEE transactions on power electronics, Cilt 26, Sayı 12, ss. 3869-3873.
  • Zhu, M., Yu, K., Luo, F. L., 2010, “Switched inductor Z-source inverter”, IEEE Transactions on Power Electronics, Cilt 25, Sayı 8, ss. 2150-2158.

Analysis of T-Source Inverter with Maximum Boost Control

Year 2021, Volume: 9 Issue: 3, 753 - 765, 01.09.2021
https://doi.org/10.36306/konjes.970208

Abstract

Conventional current and voltage source inverters need a DC-DC converter or transformer to increase the applied voltage in DC-AC conversion. In order to eliminate this need, Z-Source inverter (ZSI), which has been used frequently in recent years, has been proposed. The ZSI circuit can convert DC input voltage to the desired value using its Z-Network and short-circuit capability. In this study, T-Source inverter (TSI), which can make more efficient DC-AC conversion by eliminating the disadvantages of ZSI, is examined using Matlab/Simulink for different circuit parameters. The working principle of TSI circuit is explained theoretically by using related equations. TSI network is able to increase DC voltage by short- circuiting the switching elements in the same phase leg as in ZSI. Depending on the applied modulation index and shoot-through duty ratio, TSI can operate as a buck-boost converter. PWM based maximum boost control technique is employed to drive the switching elements. Compared to ZSI; DC-link voltage, capacitor and AC output voltage of TSI are calculated at a certain shoot-through duty ratio and DC input voltage. It has been shown that the theoretical results match with the simulation studies, and TSI circuit can effectively perform DC-AC conversion using less passive circuit elements compared to ZSI.

References

  • Adamowicz, M., Strzelecka, N., 2009, “T-source inverter”, Electrical Review, Cilt 85, Sayı 10, ss. 1-6.
  • Chen, Y., Smedley, K., 2008, "Three-Phase Boost-Type Grid-Connected Inverter," IEEE Transactions on Power Electronics, Cilt 23, Sayı 5, ss. 2301-2309.
  • Dong, S., Zhang, Q., Cheng, S., 2016, “Analysis and design of snubber circuit for Z‐source inverter applications”, IET Power Electronics, Cilt 9, Sayı 5, ss. 1083-1091.
  • Ebrahimi, S., Moghassemi, A., Olamaei, J., 2020, “PV inverters and modulation strategies: a review and a proposed control strategy for frequency and voltage regulation”, Signal Processing and Renewable Energy, Cilt 4, Sayı 1, ss. 1-21.
  • Ellabban, O., Abu-Rub, H., 2016, “Z-source inverter: Topology improvements review”, IEEE Industrial Electronics Magazine, Cilt 10, Sayı 1, ss. 6-24.
  • Endiz, M. S., Akkaya, R., 2020, “A Modified Quasi-Z-Source Inverter with Enhanced Performance Capability”, International Journal of Renewable Energy Research (IJRER), Cilt 10, Sayı 2, ss. 892- 897.
  • Estévez-Bén, A. A., Alvarez-Diazcomas, A., Rodríguez-Reséndiz, J., 2020, “Transformerless multilevel voltage-source inverter topology comparative study for PV systems”, Energies, Cilt 13, Sayı 12, ss. 3261.
  • Li, Y., Jiang, S., Cintron-Rivera, J. G., Peng, F. Z., 2012, “Modeling and control of quasi-Z-source inverter for distributed generation applications”, IEEE Transactions on Industrial Electronics, Cilt 60, Sayı 4, ss. 1532-1541.
  • Li, Y., Anderson, J., Peng, F. Z., Liu, D., 2009, “Quasi-Z-source inverter for photovoltaic power generation systems”, Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, ss. 918-924.
  • Liu, H., Zhou, B., Li, Y., Chen, J., Loh, P. C., 2020, “High-Efficiency T-Source Inverter With Low Voltage Spikes Across the Switch Bridge”, IEEE Transactions on Power Electronics, Cilt 35, Sayı 10, ss. 10554-10566.
  • Liu, W., Yuan, J., Yang, Y., Kerekes, T., 2018, “Modeling and control of single-phase quasi-Z-source inverters”, 44th Annual Conference of the IEEE Industrial Electronics Society, ss. 3737-3742.
  • Liu, W., Niazi, K. A. K., Kerekes, T., Yang, Y., 2019, “A review on transformerless step-up single-phase inverters with different dc-link voltage for photovoltaic applications”, Energies, Cilt 12, Sayı 19, ss. 3626.
  • Mande, D., Trovão, J. P., Ta, M. C., 2020, “Comprehensive review on main topologies of impedance source inverter used in electric vehicle applications”, World Electric Vehicle Journal, Cilt 11, Sayı 2, ss. 37.
  • Nguyen, M. K., Lim, Y. C., Cho, G. B., 2011, “Switched-inductor quasi-Z-source inverter”, IEEE Transactions on Power Electronics, Cilt 26, Sayı 11, ss. 3183-3191.
  • Peng, F.Z., 2003, “Z-Source Inverter”, IEEE Trans. on Industry Applications, Cilt 39, Sayı 2, ss. 504-510.
  • Sivaraman, P., Prem, P., 2017, “PR controller design and stability analysis of single stage T-source inverter based solar PV system”, Journal of the Chinese Institute of Engineers, Cilt 40, Sayı 3, ss. 235-245.
  • Strzelecki, R., Adamowicz, M., Strzelecka, N., Bury, W., 2009, “New type T-source inverter”, Compatibility and Power Electronics, ss. 191-195.
  • Tang, Y., Xie, S., Zhang, C., 2010, “Single-phase Z-source inverter”, IEEE transactions on power electronics, Cilt 26, Sayı 12, ss. 3869-3873.
  • Zhu, M., Yu, K., Luo, F. L., 2010, “Switched inductor Z-source inverter”, IEEE Transactions on Power Electronics, Cilt 25, Sayı 8, ss. 2150-2158.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mustafa Sacid Endiz 0000-0003-3325-5109

Publication Date September 1, 2021
Submission Date July 12, 2021
Acceptance Date August 10, 2021
Published in Issue Year 2021 Volume: 9 Issue: 3

Cite

IEEE M. S. Endiz, “MAKSİMUM YÜKSELTİCİ KONTROLLÜ T-KAYNAK İNVERTERİN ANALİZİ”, KONJES, vol. 9, no. 3, pp. 753–765, 2021, doi: 10.36306/konjes.970208.