Research Article
BibTex RIS Cite

Kum Zemin Yüzeyinde ve Derininde Meydana Gelen Titreşimlerin Yayılım Karakteristikleri: Karşılaştırmalı Bir Çalışma

Year 2022, Volume: 10 Issue: 1, 1 - 17, 01.03.2022
https://doi.org/10.36306/konjes.884110

Abstract

Bu makale, gevşek kum zemin yüzeyinde ve derininde meydana gelen patlatma kaynaklı titreşimlerin yayılım karakteristiklerini, patlatma ile birlikte ortaya çıkan baskın frekans ve parçacık hızları gibi parametrelerin takibiyle araştırmayı amaçlamaktadır. Bu amaçla, titreşimlerin simülasyonunu sağlamak için, yüzeyde ve yer altında belirli seviyelerden düşerek buna kaynak oluşturacak bir çelik bilye kullanılmıştır. Bu bilye, serbest düşme aparatı yardımıyla istenilen derinlik seviyesinde zemin titreşim dalgaları oluşturmaktadır. Oluşturulan darbelerin yarattığı titreşim yayılımları, üst yüzeyde belirli noktalara yerleştirilen patlatma sismografı kullanılarak takip edilmiştir. Bu çalışma için tasarlanan bir tank içerisine kurulan 4 fiziksel model üzerinde laboratuvar ölçekli toplam 60 adet yer titreşim izleme testi gerçekleştirilmiştir. Elde edilen sonuçlar irdelendiğinde, yüzeyde oluşturulan darbelerin oluşturduğu titreşimlerinin yarattığı parçacık hızlarının yer altında oluşturulan darbelerin oluşturduğu titreşim değerlerinin yarattığı parçacık hızlarına göre daha yüksek olduğu gözlemlenmiştir. Ayrıca, yer altı titreşim kaynağının derinliğinin artmasıyla, zemin yüzeyinde ölçülen parçacık hızının da azaldığı gözlemlenmiştir. Frekans analizi sonuçları, yüzey zemin titreşim izleme testleri ile yalnızca düşük frekansların (<40 Hz) üretildiğini, yer altı titreşim izleme testlerinin ise% 86.67'sinin yüksek frekanslar (>40 Hz) olduğunu göstermiştir. Son olarak, titreşim kaynağının derinliğinin artmasının, yüksek frekanslar (>40 Hz) aralığında baskın frekans aralığının azalmasına neden olduğu tespit edilmiştir.

Supporting Institution

Konya Teknik Üniversitesi BAP Koordinatörlüğü

Project Number

191009025

References

  • Alcudia, A. D., Stewart, R.R., Eliuk, N., Espersen, R., 2007, Vibration and air pressure monitoring of seismic sources, CREWES Research Report 19.
  • Aloui, M., Bleuzen, Y., Essefi, E., Abbes, C., 2016, "Ground Vibrations and Air Blast Effects Induced by Blasting in Open Pit Mines: Case of Metlaoui Mining Basin, Southwestern Tunisia", Journal of Geology & Geophysics, Vol. 5, pp. 1-8.
  • Avellan, K., Belopotocanova, E., Puurunen, M., 2017, "Measuring, Monitoring and Prediction of Vibration Effects in Rock Masses in Near-Structure Blasting", Procedia Engineering, Vol. 191, pp. 504-511.
  • Çakmak, B. B., 2007, Investigation of ground vibrations induced by production blasting at Uşak Kışladağ gold mine, M.S. Thesis, Middle East Technical University, Turkey.
  • Dogan, O., Anil, O., Akbas, S.O., Kantar, E., Tuğrul E. R., 2013, "Evaluation of blast-induced ground vibration effects in a new residential zone", Soil Dynamics and Earthquake Engineering, Vol. 50, pp. 168-181.
  • Duvall, W. I., Petkof, B., 1959, Spherical propagation of explosion-generated strain pulses in rock, Report for the United States Bureau of Mines (USBM), Report No. BM-RI-5483.
  • Gu, W., Wang, Z., Liu, J., Xu, J., Liu, X., Cao, T., 2017, "Water-Depth-Based Prediction Formula for the Blasting Vibration Velocity of Lighthouse Caused by Underwater Drilling Blasting", Shock and Vibration, Vol. 2, pp. 1-9.
  • Gu, W. B., Wang, Z. X., Chen, J. H., Liu, J. Q., Lu, M., Xu, H. M., 2016, "Influence of charge structure on the energy transfer of blasting vibration and explosive effect", Journal of Vibration and Shock, Vol. 35, No. 2, pp. 207-211.
  • Kalaycı, U., Ozer, U., Karadogan, A., Ozyurt, M. C., "Investigation of Dominant Frequency by Vibration Monitors", VIth Global stone Congress, Antalya, Turkey, 22-25 October 2014.
  • Karadogan, A., Kahriman, A., Ozer, U., 2014, "A new damage criteria norm for blast-induced ground vibrations in Turkey", Arabian Journal of Geosciences, Vol. 7, pp. 1617-1626.
  • Kekeç, B., 2010, Blasting induced ground vibration determination according to some rock materials and rock mass properties, PhD Thesis, Selcuk University, Graduate School of Natural And Applied Science, Konya, Turkey.
  • Kekeç B., Bilim N., 2014, "Evaluation of Blast Induced Vibration and Air Blast Measurements Nearby a Residential Area", Mine Planning and Equipment Selection, Drebenstedt C., Singhal R. (eds). Springer, Cham, 719-727.
  • Kekeç, B., Gökay, M. K., Bilim, N., 2015, "Evaluation of the effect of vibrational wave propagation of different artificial discontinuous planes in rock samples", Arabian Journal of Geosciences, Vol. 8, pp. 6399-6407.
  • Kekeç, B., Ghiloufi, D., 2020, “Propagation mechanisms of blast-induced ground vibration (BIGV) in clay and layered sand-clay media”, Manuscript submitted for publication.
  • Kekeç, B., Ghiloufi, D., 2021, "Propagation Mechanisms of Blast-Induced Ground Vibration (BIGV) in Different Ground Conditions", International Journal of Ecosystems and Ecology Science (IJEES), Vol. 11, No. 1, pp. 165-180.
  • Konya, C. J., Walter, E. J., 2006, Rock blasting and overbreak control manual, Report for the U.S. Departement of Transportation Federal Highway Administration, Publication No. FHWA-HI-92-001.
  • Lu, Y., 2005, "Underground blast induced ground shock and its modelling using artificial neural network", Computers and Geotechnics, Vol. 32, pp. 164-178.
  • Monjezi, M., Ahmadi, M., Sheikhan, M., Bahrami, A., Salimi, A. R., 2010, "Predicting blast-induced ground vibration using various types of neural networks", Soil Dynamics and Earthquake Engineering, Vol. 30, pp. 1233-1236.
  • Monjezi, M., Ghafurikalajahi, M., Bahrami, A., 2011, "Prediction of blast-induced ground vibration using artificial neural networks", Tunnelling and Underground Space Technology, Vol. 26, No. 1, pp. 46-50.
  • Nateghi, R., 2011, "Prediction of ground vibration level induced by blasting at different rock units", International Journal of Rock Mechanics & Mining Sciences, Vol. 48, pp. 899-908.
  • Nateghi, R., 2012, "Evaluation of blast induced ground vibration for minimizing negative effects on surrounding structures", Soil Dynamics and Earthquake Engineering, Vol. 43, pp. 133-138.
  • Ozer, U., 2008, "Environmental impacts of ground vibration induced by blasting at different rock units on the Kadıköy–Kartal metro tunnel", Engineering Geology, Vol. 100, pp. 82-90.
  • Pal Roy, P., 1998, "Characteristics of ground vibrations and structural response to surface and underground blasting", Geotechnical and Geological Engineering, Vol. 16, pp. 151-166.
  • Shi, X., Qiu, X., Zhou, J., Huang, D.,Chen, X., Gou, Y., 2016, "A Comparative Study of Ground and Underground Vibrations Induced by Bench Blasting", Shock and Vibration, Vol. 2016, pp. 1-9.
  • Silva, J., Worsey, T., Lusk, B., 2019, "Practical assessment of rock damage due to blasting", International Journal of Mining Science and Technology, Vol. 29, pp. 379-385.
  • Singh, P. K., Roy, M. P., 2008, "Damage to surface structures due to underground coal mine blasting: apprehension or real cause", Environmental Geology, Vol. 53, pp.1201-1211.
  • Singh, P. K., Roy, M. P., Paswan, R. K., Dubey, R. K., Drebenstedt, C., 2015, "Blast vibration effects in an underground mine caused by open-pit mining", International Journal of Rock Mechanics & Mining Sciences, Vol. 80, pp. 79-88.
  • Singh, T. N., 2004, "Artificial neural network approach for prediction and control of ground vibrations in mines", Mining Technology, Vol. 113, No. 4, pp. 251-256.
  • Singh, T. N., Singh, V., 2005, "An intelligent approach to prediction and control ground vibration in mines", Geotechnical and Geological Engineering, Vol. 23, pp. 249-262.
  • Siskind, D. E., Stagg, M. S., Kopp, J. W., Dowding, C. H., 1980, Structure response and damage produced by ground vibration from surface mine blasting, Report for the U.S. Bureau of Mines, Report of Investigatons 8507.
  • Torres, V. F.,N., Silveira, L. G. C., Lopes, P. F. T., De Lima, H. M., 2018, "Assessing and controlling of bench blasting-induced vibrations to minimize impacts to a neighboring community", Journal of Cleaner Production, Vol. 187, pp. 514-524.
  • Wang, Z., Fang, C., Chen, Y., Cheng, W., 2013, "A comparative study of delay time identification by vibration energy analysis in millisecond blasting", International Journal of Rock Mechanics and Mining Sciences, Vol. 60, pp. 389-400.
  • Yang, J. H., Lu, W. B., Jiang, Q. H., Yao, C., Zhou, C. B., 2016, "Frequency comparison of blast-induced vibration per delay for the full-face millisecond delay blasting in underground opening excavation", Tunnelling and Underground Space Technology, Vol. 51, pp. 189-201.
  • Zeng, Y., Li, H., Xia, X., Liu, B., Zuo, H., Zuo, H., Jiang, J., 2018, "Blast-induced rock damage control in Fangchenggang nuclear power station, China", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 10, No. 5, pp. 1-10.
  • Zhen-xiong, W., Wen-bin, G., Ting, L., Jing-lin, X., Xin, L., 2016, "Blasting Vibration Generated by Breaking-Blasting Large Barriers with EBBLB", Shock and Vibration, Vol. 2016, No. 3, pp. 1-13.

PROPAGATION CHARACTERISTICS OF SURFACE AND IN-DEPTH VIBRATIONS IN SAND GROUNDS: A COMPARATIVE ANALYSIS

Year 2022, Volume: 10 Issue: 1, 1 - 17, 01.03.2022
https://doi.org/10.36306/konjes.884110

Abstract

This paper aims to investigate the propagation characteristics of blast-induced ground vibrations in loose dry sand under surface and underground vibration conditions by monitoring the particle velocities and dominant frequencies of artificially generated ground vibrations. For this purpose, a ball drop apparatus was used to generate surface and underground vibrations at different depths. The free fall of the ball induced ground vibrations by impact. A total of 60 laboratory-scale ground vibration monitoring tests were performed on 4 physical models placed in a tank designed for this study. The vibrations were monitored on the surface of the sand filling the tank. The obtained results demonstrated that surface vibrations resulted in higher particle velocities than those generated by underground vibrations and that particle velocities measured on the ground surface decreased as the depth of the underground vibration source increased. The frequency analysis emphasized that only low frequencies (<40 Hz) were generated by surface ground vibration monitoring tests whereas 86.67% of those induced by underground vibration monitoring tests were high frequencies (>40 Hz). It was also determined that increasing the depth of the vibration source resulted in decreasing the dominant frequency range within the range of high frequencies (>40 Hz).

Project Number

191009025

References

  • Alcudia, A. D., Stewart, R.R., Eliuk, N., Espersen, R., 2007, Vibration and air pressure monitoring of seismic sources, CREWES Research Report 19.
  • Aloui, M., Bleuzen, Y., Essefi, E., Abbes, C., 2016, "Ground Vibrations and Air Blast Effects Induced by Blasting in Open Pit Mines: Case of Metlaoui Mining Basin, Southwestern Tunisia", Journal of Geology & Geophysics, Vol. 5, pp. 1-8.
  • Avellan, K., Belopotocanova, E., Puurunen, M., 2017, "Measuring, Monitoring and Prediction of Vibration Effects in Rock Masses in Near-Structure Blasting", Procedia Engineering, Vol. 191, pp. 504-511.
  • Çakmak, B. B., 2007, Investigation of ground vibrations induced by production blasting at Uşak Kışladağ gold mine, M.S. Thesis, Middle East Technical University, Turkey.
  • Dogan, O., Anil, O., Akbas, S.O., Kantar, E., Tuğrul E. R., 2013, "Evaluation of blast-induced ground vibration effects in a new residential zone", Soil Dynamics and Earthquake Engineering, Vol. 50, pp. 168-181.
  • Duvall, W. I., Petkof, B., 1959, Spherical propagation of explosion-generated strain pulses in rock, Report for the United States Bureau of Mines (USBM), Report No. BM-RI-5483.
  • Gu, W., Wang, Z., Liu, J., Xu, J., Liu, X., Cao, T., 2017, "Water-Depth-Based Prediction Formula for the Blasting Vibration Velocity of Lighthouse Caused by Underwater Drilling Blasting", Shock and Vibration, Vol. 2, pp. 1-9.
  • Gu, W. B., Wang, Z. X., Chen, J. H., Liu, J. Q., Lu, M., Xu, H. M., 2016, "Influence of charge structure on the energy transfer of blasting vibration and explosive effect", Journal of Vibration and Shock, Vol. 35, No. 2, pp. 207-211.
  • Kalaycı, U., Ozer, U., Karadogan, A., Ozyurt, M. C., "Investigation of Dominant Frequency by Vibration Monitors", VIth Global stone Congress, Antalya, Turkey, 22-25 October 2014.
  • Karadogan, A., Kahriman, A., Ozer, U., 2014, "A new damage criteria norm for blast-induced ground vibrations in Turkey", Arabian Journal of Geosciences, Vol. 7, pp. 1617-1626.
  • Kekeç, B., 2010, Blasting induced ground vibration determination according to some rock materials and rock mass properties, PhD Thesis, Selcuk University, Graduate School of Natural And Applied Science, Konya, Turkey.
  • Kekeç B., Bilim N., 2014, "Evaluation of Blast Induced Vibration and Air Blast Measurements Nearby a Residential Area", Mine Planning and Equipment Selection, Drebenstedt C., Singhal R. (eds). Springer, Cham, 719-727.
  • Kekeç, B., Gökay, M. K., Bilim, N., 2015, "Evaluation of the effect of vibrational wave propagation of different artificial discontinuous planes in rock samples", Arabian Journal of Geosciences, Vol. 8, pp. 6399-6407.
  • Kekeç, B., Ghiloufi, D., 2020, “Propagation mechanisms of blast-induced ground vibration (BIGV) in clay and layered sand-clay media”, Manuscript submitted for publication.
  • Kekeç, B., Ghiloufi, D., 2021, "Propagation Mechanisms of Blast-Induced Ground Vibration (BIGV) in Different Ground Conditions", International Journal of Ecosystems and Ecology Science (IJEES), Vol. 11, No. 1, pp. 165-180.
  • Konya, C. J., Walter, E. J., 2006, Rock blasting and overbreak control manual, Report for the U.S. Departement of Transportation Federal Highway Administration, Publication No. FHWA-HI-92-001.
  • Lu, Y., 2005, "Underground blast induced ground shock and its modelling using artificial neural network", Computers and Geotechnics, Vol. 32, pp. 164-178.
  • Monjezi, M., Ahmadi, M., Sheikhan, M., Bahrami, A., Salimi, A. R., 2010, "Predicting blast-induced ground vibration using various types of neural networks", Soil Dynamics and Earthquake Engineering, Vol. 30, pp. 1233-1236.
  • Monjezi, M., Ghafurikalajahi, M., Bahrami, A., 2011, "Prediction of blast-induced ground vibration using artificial neural networks", Tunnelling and Underground Space Technology, Vol. 26, No. 1, pp. 46-50.
  • Nateghi, R., 2011, "Prediction of ground vibration level induced by blasting at different rock units", International Journal of Rock Mechanics & Mining Sciences, Vol. 48, pp. 899-908.
  • Nateghi, R., 2012, "Evaluation of blast induced ground vibration for minimizing negative effects on surrounding structures", Soil Dynamics and Earthquake Engineering, Vol. 43, pp. 133-138.
  • Ozer, U., 2008, "Environmental impacts of ground vibration induced by blasting at different rock units on the Kadıköy–Kartal metro tunnel", Engineering Geology, Vol. 100, pp. 82-90.
  • Pal Roy, P., 1998, "Characteristics of ground vibrations and structural response to surface and underground blasting", Geotechnical and Geological Engineering, Vol. 16, pp. 151-166.
  • Shi, X., Qiu, X., Zhou, J., Huang, D.,Chen, X., Gou, Y., 2016, "A Comparative Study of Ground and Underground Vibrations Induced by Bench Blasting", Shock and Vibration, Vol. 2016, pp. 1-9.
  • Silva, J., Worsey, T., Lusk, B., 2019, "Practical assessment of rock damage due to blasting", International Journal of Mining Science and Technology, Vol. 29, pp. 379-385.
  • Singh, P. K., Roy, M. P., 2008, "Damage to surface structures due to underground coal mine blasting: apprehension or real cause", Environmental Geology, Vol. 53, pp.1201-1211.
  • Singh, P. K., Roy, M. P., Paswan, R. K., Dubey, R. K., Drebenstedt, C., 2015, "Blast vibration effects in an underground mine caused by open-pit mining", International Journal of Rock Mechanics & Mining Sciences, Vol. 80, pp. 79-88.
  • Singh, T. N., 2004, "Artificial neural network approach for prediction and control of ground vibrations in mines", Mining Technology, Vol. 113, No. 4, pp. 251-256.
  • Singh, T. N., Singh, V., 2005, "An intelligent approach to prediction and control ground vibration in mines", Geotechnical and Geological Engineering, Vol. 23, pp. 249-262.
  • Siskind, D. E., Stagg, M. S., Kopp, J. W., Dowding, C. H., 1980, Structure response and damage produced by ground vibration from surface mine blasting, Report for the U.S. Bureau of Mines, Report of Investigatons 8507.
  • Torres, V. F.,N., Silveira, L. G. C., Lopes, P. F. T., De Lima, H. M., 2018, "Assessing and controlling of bench blasting-induced vibrations to minimize impacts to a neighboring community", Journal of Cleaner Production, Vol. 187, pp. 514-524.
  • Wang, Z., Fang, C., Chen, Y., Cheng, W., 2013, "A comparative study of delay time identification by vibration energy analysis in millisecond blasting", International Journal of Rock Mechanics and Mining Sciences, Vol. 60, pp. 389-400.
  • Yang, J. H., Lu, W. B., Jiang, Q. H., Yao, C., Zhou, C. B., 2016, "Frequency comparison of blast-induced vibration per delay for the full-face millisecond delay blasting in underground opening excavation", Tunnelling and Underground Space Technology, Vol. 51, pp. 189-201.
  • Zeng, Y., Li, H., Xia, X., Liu, B., Zuo, H., Zuo, H., Jiang, J., 2018, "Blast-induced rock damage control in Fangchenggang nuclear power station, China", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 10, No. 5, pp. 1-10.
  • Zhen-xiong, W., Wen-bin, G., Ting, L., Jing-lin, X., Xin, L., 2016, "Blasting Vibration Generated by Breaking-Blasting Large Barriers with EBBLB", Shock and Vibration, Vol. 2016, No. 3, pp. 1-13.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Bilgehan Kekeç 0000-0002-1361-1244

Dhikra Ghiloufi 0000-0002-9818-6434

Project Number 191009025
Publication Date March 1, 2022
Submission Date February 21, 2021
Acceptance Date March 10, 2021
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

IEEE B. Kekeç and D. Ghiloufi, “PROPAGATION CHARACTERISTICS OF SURFACE AND IN-DEPTH VIBRATIONS IN SAND GROUNDS: A COMPARATIVE ANALYSIS”, KONJES, vol. 10, no. 1, pp. 1–17, 2022, doi: 10.36306/konjes.884110.