THE POSSIBLE THERAPEUTIC IMPACTS OF PHOTOBIOMODULATION AND LOW-DOSE PHOTODYNAMIC THERAPY ON HUVECS TOWARDS ANGIOGENESIS: A COMPARATIVE IN VITRO ANALYSIS
Yıl 2022,
Cilt: 10 Sayı: 3, 774 - 792, 01.09.2022
Dilara Portakal Koç
,
Günnur Onak Pulat
,
Nermin Topaloğlu Avşar
Öz
Photobiomodulation (PBM) is a non-ionizing therapy that promotes faster wound healing and cell proliferation/differentiation. It is recently understood that photodynamic therapy (PDT) may act as PBM when applied at low-level. In this study, a comparative analysis between PBM and low-dose PDT was performed on HUVECs to increase angiogenesis. HUVECs were irradiated at 808-nm of wavelength. Indocyanine green was used as a photosensitizer in PDT applications. Single and triple treatments were employed for both modalities. Their effects were analyzed with cell viability, intracellular ROS, MMP change, NO release, and morphological analysis. The expressions of vascularization-related proteins (VEGF, PECAM-1, and vWf) were determined through immunofluorescence staining and qRT-PCR. Temperature changes during applications were monitored to determine any thermal damages. It was observed that triple PDT application was more successful at increasing cell proliferation and tube-like structure formation with a 20% rate. The level of ROS did not significantly change in all applications. However, the amount of NO release in triple PDT application was nearly 5 times that of the control group, which showed it acted as a key molecule. The vascularization-related proteins were more strongly expressed in PDT applications. It was understood that low-dose PDT can exert a photobiomodulation effect to accelerate vascularization through NO release.
Destekleyen Kurum
İzmir Katip Çelebi University
Proje Numarası
2021-TYL-FEBE-0001
Teşekkür
The authors are grateful to Emel Bakay, Assoc. Prof. Utku Kürşat Ercan, Assist. Prof. Didem Şen Karaman, and Assoc. Prof. Ozan Karaman for their valuable contributions.
Kaynakça
- Amaroli, A. et al., 2019, “Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation”, Lasers in Medical Science, Vol. 34, Nr. 3, pp. 495.
- Ateş, G. B. et al., 2018, “Indocyanine green-mediated photobiomodulation on human osteoblast cells”, Lasers in Medical Science, Vol. 33, Nr. 7, pp. 1591–1599.
- Ateş, G. B. et al., 2017, “Methylene blue-mediated photobiomodulation on human osteoblast cells”, Lasers in Medical Science, Vol. 32, pp. 1847-1855.
- Basso, F. G. et al., 2013, “Biostimulatory effect of low-level laser therapy on keratinocytes in vitro”, Lasers in Medical Science, Vol. 28, Nr. 2, pp. 367–374.
- Beltrán, B. et al., 2000, “The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death”, Proceedings of the National Academy of Sciences, Vol. 97, Nr. 26, pp. 14602–14607.
- Borutaite, V. et al., 2000, “Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols”, Biochimica et Biophysica Acta. Bioenergetics, Vol. 1459, Nr. 2–3, pp. 405–412.
- Bölükbaşı Ateş, G. et al., 2020, “Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells”, Cytotechnology Vol. 72, pp. 247-258.
- Carpentier, G. et al., 2020, “Angiogenesis Analyzer for ImageJ — A comparative morphometric analysis of “Endothelial Tube Formation Assay” and “Fibrin Bead Assay””, Scientific Reports, Vol. 10, Nr. 11568.
- Castano, A. P. et al., 2004, “Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization”, Photodiagnosis and Photodynamic Therapy, Vol. 1, Nr. 4, pp. 279–293.
- Cury, V. et al., 2013, “Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2”, Journal of Photochemistry and Photobiology B: Biology, Vol. 125, pp. 164–170.
- de Freitas, L. F., Hamblin, M. R., 2016, “Proposed mechanisms of photobiomodulation or low-level light therapy”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 22, Nr. 3, pp. 348-364.
- Hamblin, M. R., 2018, “Mechanisms and mitochondrial redox signaling in photobiomodulation”, Photochemistry and Photobiology, Vol. 94, Nr. 2, pp. 199–212.
- Hawkins, D. et al., 2005, “Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing”, Annals of the New York Academy of Sciences, Vol. 1056, Nr. 1, pp. 486–493.
- Hough, M. A. et al., 2014, “NO binding to the proapoptotic cytochrome c-cardiolipin complex”, Vitamins and Hormones, Vol. 96, pp. 193–209.
- Huang, Y. Y., (2009), “Biphasic dose response in low level light therapy”, Dose Response, Vol. 7, Nr. 4, pp. 358-83.
Karu, T. I. et al., 2005, “Cellular effects of low power laser therapy can be mediated by nitric oxide”, Lasers in Surgery and Medicine, Vol. 36, Nr. 4, pp. 307–314.
- Khorsandi, K. et al., 2021, “Low-dose photodynamic therapy effect on closure of scratch wounds of normal and diabetic fibroblast cells: An in vitro study”, Journal of Biophotonics, Vol. 14, Nr. 7, e202100005.
- Mittal, M. et al., 2014, “Reactive oxygen species in inflammation and tissue injury”, Antioxidants & Redox Signaling, Vol. 20, Nr. 7, pp. 1126–1167.
- Müller, A. M. et al., 2002, “Expression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitro”, Experimental and Molecular Pathology, Vol. 72, Nr. 3, pp. 221–229.
- Onak Pulat, G. et al., 2021, “Role of functionalized self-assembled peptide hydrogels in in vitro vasculogenesis”, Soft Matter, Vol. 17, pp. 6616–6626.
- Schieber, M., Chandel, N. S., 2014, “ROS function in redox signaling and oxidative stress”, Current biology: CB, Vol. 24, Nr. 10, pp. R453–R462.
- Sibata, C. H. et al., 2000, “Photodynamic therapy: a new concept in medical treatment”, Brazilian Journal of Medical and Biological Research, Vol. 33, Nr. 8, pp. 869–880.
- Terena, S. M. L. et al., 2021, “Photobiomodulation alters the viability of HUVECs cells”, Lasers in Medical Science Vol. 36, pp. 83-90.
- Topaloglu, N. et al., 2015, “Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models”, Journal of Biomedical Optics, Vol. 20, Nr. 2, 028003.
- Topaloglu, N. et al., 2016, “The role of reactive oxygen species in the antibacterial photodynamic treatment: photoinactivation vs proliferation”, Letters in Applied Microbiology, Vol. 62, Nr. 3, pp. 230-236.
- Topaloglu, N. et al., 2021a, “Comparative analysis of the light parameters of red and near-infrared diode lasers to induce photobiomodulation on fibroblasts and keratinocytes: An in vitro study”, Photodermatology, Photoimmunology & Photomedicine, Vol. 37, pp. 253-262.
- Topaloglu, N. et al., 2021b, “Induced photo-cytotoxicity on prostate cancer cells with the photodynamic action of toluidine Blue ortho”, Photodiagnosis and Photodynamic Therapy, Vol. 34, Nr. 102306.
- Topaloglu, N., Bakay, E., 2022, “Mechanistic approaches to the light-induced neural cell differentiation: Photobiomodulation vs Low-Dose Photodynamic Therapy”, Photodiagnosis and Photodynamic Therapy, Vol. 37, Nr. 102702.
- Yaralı, Z. B. et al., 2020, “Effect of integrin binding peptide on vascularization of scaffold-free microtissue spheroids”, Tissue Engineering and Regenerative Medicine, Vol. 17, Nr. 5, pp. 595–605.
- Zhang, J. et al., 2016, “ROS and ROS-mediated cellular signaling”, Oxidative Medicine and Cellular Longevity, Vol. 4350965.
- Zhang, X. et al., 2005, “Low-dose photodynamic therapy increases endothelial cell proliferation and VEGF expression in nude mice brain”, Lasers in Medical Science, Vol. 20, Nr. 2, pp. 74–79.
- Zorov, D. B. et al., 2014, “Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release”, Physiological Reviews, Vol. 94, Nr. 3, pp. 909–950.
Fotobiyomodülasyon ve Düşük Doz Fotodinamik Terapinin HUVEC Hücrelerindeki Anjiyogenez'e Yönelik Olası Terapötik Etkileri: Karşılaştırmalı İn Vitro Analiz
Yıl 2022,
Cilt: 10 Sayı: 3, 774 - 792, 01.09.2022
Dilara Portakal Koç
,
Günnur Onak Pulat
,
Nermin Topaloğlu Avşar
Öz
Fotobiyomodülasyon (FBM), yara iyileşmesi, hücre proliferasyonu/farklılaşması mekanizmalarını hızlandıran iyonlaştırıcı olmayan bir ışık terapisidir. Son zamanlarda, fotodinamik terapinin (FDT) düşük dozlarda uygulandığında FBM gibi davranabileceği anlaşılmıştır. Bu çalışmada karşılaştırmalı bir analizle anjiyogenezi artırmak için HUVEC'ler üzerinde FBM ve düşük doz FDT’nin etkisi araştırılmıştır. HUVEC’ler 808 nm dalgaboyu ile uyarılmıştır. FDT uygulamalarında fotosensitizan olarak indosiyanin yeşil kullanılmıştır. Her iki yöntem tekli ve üçlü olarak uygulanmıştır. Uygulamaların etkileri hücre canlılığı, hücre içi ROS, MMP değişikliği, NO salınımı ve morfolojik analizler ile incelenmiştir. Vaskülarizasyonla ilgili proteinlerin (VEGF, PECAM-1 ve vWf) ifadeleri, immünofloresan boyama ve qRT-PCR yöntemleri ile belirlenmiştir. Olası termal hasarları belirlemek için ışık uygulamaları sırasındaki sıcaklık değişimleri izlenmiştir. Sonucunda, üçlü düşük doz FDT uygulamasının hücre proliferasyonu ve damar benzeri yapı oluşumunda %20 oranında daha başarılı olduğu gözlenmiştir. Bütün uygulamalarda ROS seviyesi önemli ölçüde değişmezken, üçlü FDT uygulamalarında NO salınımının miktarı kontrol grubunun yaklaşık 5 katı olmuş, bu da NO salınımının bu mekanizmada anahtar bir molekül olarak hareket ettiğini göstermiştir. Vaskülarizasyonla ilgili proteinler de FDT uygulamalarında daha güçlü bir şekilde ifade edilmiştir. Sonuç olarak, düşük doz FDT'nin NO salınımı yoluyla vaskülarizasyonu hızlandırmak için fotobiyomodülatif etki gösterdiği anlaşılmıştır.
Proje Numarası
2021-TYL-FEBE-0001
Kaynakça
- Amaroli, A. et al., 2019, “Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation”, Lasers in Medical Science, Vol. 34, Nr. 3, pp. 495.
- Ateş, G. B. et al., 2018, “Indocyanine green-mediated photobiomodulation on human osteoblast cells”, Lasers in Medical Science, Vol. 33, Nr. 7, pp. 1591–1599.
- Ateş, G. B. et al., 2017, “Methylene blue-mediated photobiomodulation on human osteoblast cells”, Lasers in Medical Science, Vol. 32, pp. 1847-1855.
- Basso, F. G. et al., 2013, “Biostimulatory effect of low-level laser therapy on keratinocytes in vitro”, Lasers in Medical Science, Vol. 28, Nr. 2, pp. 367–374.
- Beltrán, B. et al., 2000, “The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death”, Proceedings of the National Academy of Sciences, Vol. 97, Nr. 26, pp. 14602–14607.
- Borutaite, V. et al., 2000, “Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols”, Biochimica et Biophysica Acta. Bioenergetics, Vol. 1459, Nr. 2–3, pp. 405–412.
- Bölükbaşı Ateş, G. et al., 2020, “Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells”, Cytotechnology Vol. 72, pp. 247-258.
- Carpentier, G. et al., 2020, “Angiogenesis Analyzer for ImageJ — A comparative morphometric analysis of “Endothelial Tube Formation Assay” and “Fibrin Bead Assay””, Scientific Reports, Vol. 10, Nr. 11568.
- Castano, A. P. et al., 2004, “Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization”, Photodiagnosis and Photodynamic Therapy, Vol. 1, Nr. 4, pp. 279–293.
- Cury, V. et al., 2013, “Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2”, Journal of Photochemistry and Photobiology B: Biology, Vol. 125, pp. 164–170.
- de Freitas, L. F., Hamblin, M. R., 2016, “Proposed mechanisms of photobiomodulation or low-level light therapy”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 22, Nr. 3, pp. 348-364.
- Hamblin, M. R., 2018, “Mechanisms and mitochondrial redox signaling in photobiomodulation”, Photochemistry and Photobiology, Vol. 94, Nr. 2, pp. 199–212.
- Hawkins, D. et al., 2005, “Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing”, Annals of the New York Academy of Sciences, Vol. 1056, Nr. 1, pp. 486–493.
- Hough, M. A. et al., 2014, “NO binding to the proapoptotic cytochrome c-cardiolipin complex”, Vitamins and Hormones, Vol. 96, pp. 193–209.
- Huang, Y. Y., (2009), “Biphasic dose response in low level light therapy”, Dose Response, Vol. 7, Nr. 4, pp. 358-83.
Karu, T. I. et al., 2005, “Cellular effects of low power laser therapy can be mediated by nitric oxide”, Lasers in Surgery and Medicine, Vol. 36, Nr. 4, pp. 307–314.
- Khorsandi, K. et al., 2021, “Low-dose photodynamic therapy effect on closure of scratch wounds of normal and diabetic fibroblast cells: An in vitro study”, Journal of Biophotonics, Vol. 14, Nr. 7, e202100005.
- Mittal, M. et al., 2014, “Reactive oxygen species in inflammation and tissue injury”, Antioxidants & Redox Signaling, Vol. 20, Nr. 7, pp. 1126–1167.
- Müller, A. M. et al., 2002, “Expression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitro”, Experimental and Molecular Pathology, Vol. 72, Nr. 3, pp. 221–229.
- Onak Pulat, G. et al., 2021, “Role of functionalized self-assembled peptide hydrogels in in vitro vasculogenesis”, Soft Matter, Vol. 17, pp. 6616–6626.
- Schieber, M., Chandel, N. S., 2014, “ROS function in redox signaling and oxidative stress”, Current biology: CB, Vol. 24, Nr. 10, pp. R453–R462.
- Sibata, C. H. et al., 2000, “Photodynamic therapy: a new concept in medical treatment”, Brazilian Journal of Medical and Biological Research, Vol. 33, Nr. 8, pp. 869–880.
- Terena, S. M. L. et al., 2021, “Photobiomodulation alters the viability of HUVECs cells”, Lasers in Medical Science Vol. 36, pp. 83-90.
- Topaloglu, N. et al., 2015, “Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models”, Journal of Biomedical Optics, Vol. 20, Nr. 2, 028003.
- Topaloglu, N. et al., 2016, “The role of reactive oxygen species in the antibacterial photodynamic treatment: photoinactivation vs proliferation”, Letters in Applied Microbiology, Vol. 62, Nr. 3, pp. 230-236.
- Topaloglu, N. et al., 2021a, “Comparative analysis of the light parameters of red and near-infrared diode lasers to induce photobiomodulation on fibroblasts and keratinocytes: An in vitro study”, Photodermatology, Photoimmunology & Photomedicine, Vol. 37, pp. 253-262.
- Topaloglu, N. et al., 2021b, “Induced photo-cytotoxicity on prostate cancer cells with the photodynamic action of toluidine Blue ortho”, Photodiagnosis and Photodynamic Therapy, Vol. 34, Nr. 102306.
- Topaloglu, N., Bakay, E., 2022, “Mechanistic approaches to the light-induced neural cell differentiation: Photobiomodulation vs Low-Dose Photodynamic Therapy”, Photodiagnosis and Photodynamic Therapy, Vol. 37, Nr. 102702.
- Yaralı, Z. B. et al., 2020, “Effect of integrin binding peptide on vascularization of scaffold-free microtissue spheroids”, Tissue Engineering and Regenerative Medicine, Vol. 17, Nr. 5, pp. 595–605.
- Zhang, J. et al., 2016, “ROS and ROS-mediated cellular signaling”, Oxidative Medicine and Cellular Longevity, Vol. 4350965.
- Zhang, X. et al., 2005, “Low-dose photodynamic therapy increases endothelial cell proliferation and VEGF expression in nude mice brain”, Lasers in Medical Science, Vol. 20, Nr. 2, pp. 74–79.
- Zorov, D. B. et al., 2014, “Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release”, Physiological Reviews, Vol. 94, Nr. 3, pp. 909–950.