Araştırma Makalesi
BibTex RIS Kaynak Göster

TEPEKENT (KONYA-ORTA ANADOLU) YÖRESİNDEKİ VOLKANİK KAYALARIN PETROGRAFİSİ, JEOKİMYASI VE PETROLOJİSİ

Yıl 2022, Cilt: 10 Sayı: 4, 1002 - 1018, 03.12.2022
https://doi.org/10.36306/konjes.1165649

Öz

Bu çalışmada, Tepekent yöresi (Konya-Orta Anadolu) yüzeyleyen Miyosen yaşlı riyolitik, dasitik ve bazaltik lav akıntıları ve bunların piroklastiklerinin petrografisi, mineralojisi, jeokimyası ve petrolojisi incelenmiştir. İncelenen kayalar Toplam alkali-silika (TAS) diyagramına göre yüksek potasyum içerikli bazaltik traki-andezit, dasit ve riyolit bileşiminde kayalardır. Bununla birlikte incelenen bazaltik traki-andezitler Na2O-K2O içeriklerine göre şoşonit olarak da adlandırılmaktadır. Dasitik kayalar yer yer mm’den dm’ye değişen boyutta anklav içermektedir. Anklavlar TAS diyagramında traki-bazalt alanına düşmekte olup ana kayalarından daha mafik bir bileşim sergilemektedir. Bazaltik traki-andezitler holokristalin porfirik doku gösterirken, dasitler değişen volkanik cam içerikleri ile hipokristalin porfirik doku sergilemektedir. Bazaltik traki-andezitler olivin, klinopiroksen, plajiyoklaz ve Fe-Ti oksit içermekte, nadiren zeolitleşme ve olivinlerde iddingsitleşmeler göstermektedir. Dasitler amfibol, biyotit, plajiyoklaz, Fe-Ti oksit ve nadiren de kuvars mikro fenokristallerinin içerisine dağıldığı, aynı minerallerin mikrokristallerine ilaveten volkanik camdan oluşan hamur içeriğine sahiptir. Dasitik ana kayalarda yer alan anklavlar ana mafik mineral olarak amfibol içermekte olup, magma mixing anklavlarında sık sık rastlanan ince taneli dokuya sahiptir, bununla birlikte, bıçaksı biyotit, söndürülmüş amfibol ve elek dokulu plajiyoklaz gibi dokusal özellikler sergilemektedir. Riyolitler ise kuvars, plajiyoklaz ve Fe-Ti oksit mikrofenokristalinin yanı sıra önemli derecede sanidin ve biyotit içermektedir. Bununla birlikte dasitlere göre daha fazla volkanik cam içeriğine sahip olup, hipohiyalin porfirik doku sergilemektedir. İncelenen kayaların Okyanus Ortası Sırtı Bazaltları’na (OOSB) göre normalize iz element diyagramında, büyük iyon yarıçaplı litofil element bileşiminde (BİYE, Sr, K, Rb, U ve Th) bir zenginleşme izlenirken, yüksek alan enerjili elemente (YAEE, Nb, Ta, Ti) bileşiminde ise bir fakirleşme görülmektedir. Kondrite göre normalize nadir toprak element dağılımları, (La/Lu)N genel olarak 14-15 arasında değişim göstermektedir ve amfibol fraksiyolaşmasını anlatan kaşık desenli bir dağılım sunmaktadır. Riyolitlerde ise plajiyoklaz fraksiyonlaşmasını ifade eden belirgin biçimde negatif Eu anomalisi ve sanidin fraksiyonlaşmasına işaret eden önemli derecede negatif Ba anomalisi gözlemlenmektedir. Elde edilen veriler ışığında, incelenen volkanik kayaların yitim izi taşıyan çarpışma sonrası bimodal volkanizmanın ürünleri olduğu ve zenginleşmiş litosferik mantodan türemiş oldukları önerilmektedir.

Destekleyen Kurum

KONYA TEKNİK ÜNİVERSİTESİ BAP KOORDİNATÖRLÜĞÜ

Proje Numarası

BAP211007061

Teşekkür

Bu çalışma Konya Teknik Üniversitesi Bilimsel Araştırmalar Koordinatörlüğü BAP211007061 numaralı proje tarafından finanse edilmektedir. Konya Teknik Üniversitesi Bilimsel Araştırma Koordinatörlüğü'ne katkılarından dolayı teşekkür ederiz.

Kaynakça

  • Arslan, M., Temizel, İ., Abdioğlu, E., Kolaylı, H., Yücel, C., Boztuğ, D., and Şen, C., 2013, 40Ar–39Ar dating, whole-rock and Sr–Nd–Pb isotope geochemistry of post-collisional Eocene volcanic rocks in the southern part of the Eastern Pontides (NE Turkey): implications for magma evolution in extension-induced origin: Contributions to Mineralogy and Petrology, v. 166, no. 1, 113-142.
  • Asan, K., Kurt, H., Gündüz, M., Gençoğlu Korkmaz, G., and Morgan, G., 2021, Geology, geochronology, and geochemistry of the Miocene Sulutas volcanic complex, Konya-Central Anatolia: genesis of orogenic and anorogenic rock associations in an extensional geodynamic setting: International Geology Review, 1-32.
  • Best, M. G., 2003, Igneous and metamorphic petrology, John Wiley & Sons.
  • Davidson, J., Turner, S., and Plank, T., 2013, Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes: Journal of Petrology, v. 54, no. 3, 525-537.
  • DePaolo, D. J., and Daley, E. E., 2000, Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension: Chemical Geology, v. 169, no. 1-2, 28.
  • Elburg, M. A., 1996, Genetic significance of multiple enclave types in a peraluminous ignimbrite suite, Lachlan Fold Belt, Australia: Journal of Petrology, v. 37, no. 6, 1385-1408.
  • Eren, Y., 1993, Konya Kuzeybatısında Bozdağlar Masifinin Otokton ve Örtü Birimlerinin Stratigrafisi: Geological Bulletin of Turkey, v. 36, 7-23.
  • Gençoğlu Korkmaz, G., Asan, K., Kurt, H., and Morgan, G., 2017, 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotope geochemistry of the Neogene bimodal volcanism in the Yükselen area, NW Konya (Central Anatolia, Turkey): Journal of African Earth Sciences, v. 129, 427-444.
  • Gencoğlu Korkmaz, G., Kurt, H., Asan, K., and Leybourne, M., 2022, Ar-Ar Geochronology and Sr-Nd-Pb-O Isotopic Systematics of the Post-collisional Volcanic Rocks from the Karapinar-Karacadag Area (Central Anatolia, Turkey): An Alternative Model for Orogenic Geochemical Signature in Sodic Alkali Basalts: Journal of Geosciences, v. 67, no. 1, 53-69.
  • Halliday, A., Dickin, A., Fallick, A., and Fitton, J., 1988, Mantle dynamics: a Nd, Sr, Pb and O isotopic study of the Cameroon line volcanic chain: Journal of Petrology, v. 29, no. 1, 181-211.
  • Hofmann, A. W., 1988, Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust: Earth and Planetary Science Letters, v. 90, no. 3, 297-314.
  • Hofmann, A.W., 2008, 2.03 - Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. Pergamon, Oxford, pp 1-44
  • Irvine, T., and Baragar, W. R. A., 1971, A Guide to the Chemical Classification of the Common Volcanic Rocks: Canadian Journal of Earth Sciences, v. 8, 523-548.
  • Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., and Zanettin, B. A., 1986, A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram: J. Petrol, v. 127, 745.
  • Le Maitre, R. W., 2002, A classification of igneous rocks and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. : Cambridge University pressCambridge University press, 236.
  • Maniar, P. D., and Piccoli, P. M., 1989, Tectonic discrimination of granitoids: Geological society of America bulletin, v. 101, no. 5, 635-643.
  • Menzies, M. A., and Kyle, P. R., 1990, Continental volcanism: a crust-mantle probe: Continental mantle, 157-177.
  • Nakamura, N., 1974, Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites: Geochimica et Cosmochimica Acta, v. 38, no. 5, 757-775.
  • Pearce, J., 1983, Role of the sub-continental lithosphere in magma genesis at active continental margin: Continental Basalts and Mantle Xenoliths, 230-249.
  • Pearce, J., Harris, N., and G. Tindle, A., 1984, Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks, Journal of Petrology, 956-983.
  • Pearce, J. A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust: Lithos, v. 100, no. 1-4, 14-48.
  • Pearce, J. A., and Peate, D. W., 1995, Tectonic Implications of the Composition of Volcanic ARC Magmas: Annual Review of Earth and Planetary Sciences, v. 23, no. 1, 251-285.
  • Peccerillo, A., 2005, Plio-Quaternary Volcanism in Italy:Petrology, Geochemistry, Geodynamics, 443.
  • Peccerillo, A., and Taylor, S., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey: Contributions to mineralogy and petrology, v. 58, no. 1, 63-81.
  • Rollinson, H. R., 1993, Using geochemical data: evaluation: Presentation, interpretation. Singapore. Ongman.
  • Şengör, A. C., and Yilmaz, Y., 1981, Tethyan evolution of Turkey: a plate tectonic approach: Tectonophysics, v. 75, no. 3-4, 181-241.
  • Sun, S., and McDonough, W., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, no. 1, 313-345.
  • Thompson, R., Morrison, M., Hendry, G., and Parry, S., 1984, An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, v. 310, no. 1514, 549-590.
  • Van Hinsbergen, D. J., Maffione, M., Plunder, A., Kaymakcı, N., Ganerød, M., Hendriks, B. W., Corfu, F., Gürer, D., de Gelder, G. I., and Peters, K., 2016, Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey: Tectonics, v. 35, no. 4, 983-1014.
  • Weaver, B. L., 1991, The origin of ocean island basalt end-member compositions: trace element and isotopic constraints: Earth and Planetary Science Letters, v. 104, no. 2-4, 381-397.
  • Whitney, D. L., and Evans, B. W., 2009, Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, no. 1, 185-187.
  • Wilson, B. M., 1989, Igneous petrogenesis a global tectonic approach, Springer Science & Business Media.

Petrography, Geochemistry and Petrology of Volcanic Rocks in Tepekent Region (Konya-Central Anatolia)

Yıl 2022, Cilt: 10 Sayı: 4, 1002 - 1018, 03.12.2022
https://doi.org/10.36306/konjes.1165649

Öz

In this study, the petrography, mineralogy, geochemistry and petrology of Miocene aged rhyolitic, dacitic and basaltic lava flows and their pyroclastics cropping out in the Tepekent region (Konya-Central Anatolia) were investigated. The investigated rocks are basaltic trachy-andesite, andesite, dacite and rhyolite rocks with high potassium content according to the Total Alkali-Silica (TAS) diagram. However, the basaltic trachy-andesites examined are also called shoshonite according to their Na2O-K2O content. Dacitic rocks contain enclaves varying in size from mm to dm. The enclaves fall into the trachy-basalt area in the TAS diagram and exhibit a more mafic composition than the host-rocks. Basaltic trachy-andesites show holocrystalline porphyric texture, while dacites display hypocrystalline porphyric texture with varying volcanic glass contents. Basaltic trachy-andesites contain olivine, clinopyroxene, plagioclase and Fe-Ti oxide, show zeolitisation in places and iddingsitization in olivines. Dacites have a paste content consisting of volcanic glass in addition to microcrystals of the same minerals, in which amphibole, biotite, plagioclase, Fe-Ti oxide and occasionally quartz micro-phenocrysts are dispersed into it. Enclaves located in dacitic host-rocks have the fine-grained texture often found in magma mixing enclaves, however, they are composed of bladed biotite, quenched amphibole and sieve-textured plagioclase. Rhyolites contain significant amounts of sanidine and biotite as well as quartz, plagioclase and Fe-Ti oxide microphenocryst. However, they have more volcanic glass content than dacites and exhibit hypohialine porphric texture. In the Mid-Ocean Ridge Basalts (MORB) normalized trace element diagram an enrichment is observed within large ion radius lithophile elements (LILE, Sr, K, Rb, U and Th) composition, while a depletion is observed. within the high field strength elements (HFSE, Nb, Ta, Ti) contents. Rare earth element distributions normalized to chondrite, (La/Lu)N generally vary between 14-15 and present a spoon-patterned distribution describing amphibole fractionation. In the rhyolites, on the other hand, a clearly negative Eu anomaly, which expresses the plagioclase fractionation, is observed. In the light of the obtained data, it is suggested that the investigated volcanic rocks are post-collisional bimodal volcanism products bearing subduction marks and are derived from the enriched lithospheric mantle.

Proje Numarası

BAP211007061

Kaynakça

  • Arslan, M., Temizel, İ., Abdioğlu, E., Kolaylı, H., Yücel, C., Boztuğ, D., and Şen, C., 2013, 40Ar–39Ar dating, whole-rock and Sr–Nd–Pb isotope geochemistry of post-collisional Eocene volcanic rocks in the southern part of the Eastern Pontides (NE Turkey): implications for magma evolution in extension-induced origin: Contributions to Mineralogy and Petrology, v. 166, no. 1, 113-142.
  • Asan, K., Kurt, H., Gündüz, M., Gençoğlu Korkmaz, G., and Morgan, G., 2021, Geology, geochronology, and geochemistry of the Miocene Sulutas volcanic complex, Konya-Central Anatolia: genesis of orogenic and anorogenic rock associations in an extensional geodynamic setting: International Geology Review, 1-32.
  • Best, M. G., 2003, Igneous and metamorphic petrology, John Wiley & Sons.
  • Davidson, J., Turner, S., and Plank, T., 2013, Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes: Journal of Petrology, v. 54, no. 3, 525-537.
  • DePaolo, D. J., and Daley, E. E., 2000, Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension: Chemical Geology, v. 169, no. 1-2, 28.
  • Elburg, M. A., 1996, Genetic significance of multiple enclave types in a peraluminous ignimbrite suite, Lachlan Fold Belt, Australia: Journal of Petrology, v. 37, no. 6, 1385-1408.
  • Eren, Y., 1993, Konya Kuzeybatısında Bozdağlar Masifinin Otokton ve Örtü Birimlerinin Stratigrafisi: Geological Bulletin of Turkey, v. 36, 7-23.
  • Gençoğlu Korkmaz, G., Asan, K., Kurt, H., and Morgan, G., 2017, 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotope geochemistry of the Neogene bimodal volcanism in the Yükselen area, NW Konya (Central Anatolia, Turkey): Journal of African Earth Sciences, v. 129, 427-444.
  • Gencoğlu Korkmaz, G., Kurt, H., Asan, K., and Leybourne, M., 2022, Ar-Ar Geochronology and Sr-Nd-Pb-O Isotopic Systematics of the Post-collisional Volcanic Rocks from the Karapinar-Karacadag Area (Central Anatolia, Turkey): An Alternative Model for Orogenic Geochemical Signature in Sodic Alkali Basalts: Journal of Geosciences, v. 67, no. 1, 53-69.
  • Halliday, A., Dickin, A., Fallick, A., and Fitton, J., 1988, Mantle dynamics: a Nd, Sr, Pb and O isotopic study of the Cameroon line volcanic chain: Journal of Petrology, v. 29, no. 1, 181-211.
  • Hofmann, A. W., 1988, Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust: Earth and Planetary Science Letters, v. 90, no. 3, 297-314.
  • Hofmann, A.W., 2008, 2.03 - Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. Pergamon, Oxford, pp 1-44
  • Irvine, T., and Baragar, W. R. A., 1971, A Guide to the Chemical Classification of the Common Volcanic Rocks: Canadian Journal of Earth Sciences, v. 8, 523-548.
  • Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., and Zanettin, B. A., 1986, A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram: J. Petrol, v. 127, 745.
  • Le Maitre, R. W., 2002, A classification of igneous rocks and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. : Cambridge University pressCambridge University press, 236.
  • Maniar, P. D., and Piccoli, P. M., 1989, Tectonic discrimination of granitoids: Geological society of America bulletin, v. 101, no. 5, 635-643.
  • Menzies, M. A., and Kyle, P. R., 1990, Continental volcanism: a crust-mantle probe: Continental mantle, 157-177.
  • Nakamura, N., 1974, Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites: Geochimica et Cosmochimica Acta, v. 38, no. 5, 757-775.
  • Pearce, J., 1983, Role of the sub-continental lithosphere in magma genesis at active continental margin: Continental Basalts and Mantle Xenoliths, 230-249.
  • Pearce, J., Harris, N., and G. Tindle, A., 1984, Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks, Journal of Petrology, 956-983.
  • Pearce, J. A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust: Lithos, v. 100, no. 1-4, 14-48.
  • Pearce, J. A., and Peate, D. W., 1995, Tectonic Implications of the Composition of Volcanic ARC Magmas: Annual Review of Earth and Planetary Sciences, v. 23, no. 1, 251-285.
  • Peccerillo, A., 2005, Plio-Quaternary Volcanism in Italy:Petrology, Geochemistry, Geodynamics, 443.
  • Peccerillo, A., and Taylor, S., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey: Contributions to mineralogy and petrology, v. 58, no. 1, 63-81.
  • Rollinson, H. R., 1993, Using geochemical data: evaluation: Presentation, interpretation. Singapore. Ongman.
  • Şengör, A. C., and Yilmaz, Y., 1981, Tethyan evolution of Turkey: a plate tectonic approach: Tectonophysics, v. 75, no. 3-4, 181-241.
  • Sun, S., and McDonough, W., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, no. 1, 313-345.
  • Thompson, R., Morrison, M., Hendry, G., and Parry, S., 1984, An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, v. 310, no. 1514, 549-590.
  • Van Hinsbergen, D. J., Maffione, M., Plunder, A., Kaymakcı, N., Ganerød, M., Hendriks, B. W., Corfu, F., Gürer, D., de Gelder, G. I., and Peters, K., 2016, Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey: Tectonics, v. 35, no. 4, 983-1014.
  • Weaver, B. L., 1991, The origin of ocean island basalt end-member compositions: trace element and isotopic constraints: Earth and Planetary Science Letters, v. 104, no. 2-4, 381-397.
  • Whitney, D. L., and Evans, B. W., 2009, Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, no. 1, 185-187.
  • Wilson, B. M., 1989, Igneous petrogenesis a global tectonic approach, Springer Science & Business Media.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Büşra Eryiğit 0000-0002-7629-8371

Huseyin Kurt 0000-0001-7991-2085

Kürşad Asan 0000-0003-4244-1747

Gülin Gençoğlu Korkmaz 0000-0003-0185-2806

Proje Numarası BAP211007061
Yayımlanma Tarihi 3 Aralık 2022
Gönderilme Tarihi 23 Ağustos 2022
Kabul Tarihi 14 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 4

Kaynak Göster

IEEE B. Eryiğit, H. Kurt, K. Asan, ve G. Gençoğlu Korkmaz, “TEPEKENT (KONYA-ORTA ANADOLU) YÖRESİNDEKİ VOLKANİK KAYALARIN PETROGRAFİSİ, JEOKİMYASI VE PETROLOJİSİ”, KONJES, c. 10, sy. 4, ss. 1002–1018, 2022, doi: 10.36306/konjes.1165649.