Araştırma Makalesi
BibTex RIS Kaynak Göster

KEKİK YAĞI İLE HAZIRLANMIŞ BİYOPOLİMER KOMPOZİT FİLMLER VE ÖZELLİKLERİNİN İNCELENMESİ

Yıl 2023, Cilt: 11 Sayı: 1, 247 - 260, 01.03.2023
https://doi.org/10.36306/konjes.1193618

Öz

Bu çalışmada, tamamen yenilenebilir ve biyolojik olarak parçalanabilen kompozit filmler üretmek için; polimer matris olarak biyobazlı akrilatlanmış epoksitlenmiş soya yağı (AESO) öncelikle antibakteriyel özelliği kanıtlanmış güçlü bir esansiyel yağ olan kekik yağı (KY) farklı oranlarda (ağırlıkça %0, %1, %2, %3, %4, %5) ilave edilerek oluşturulan filmlerin antibakteriyel özellikleri incelenmiş ve en uygun oran belirlenmiştir. Bu oran sabit tutularak çalışmanın ikinci aşamasında farklı oranlarda nanokil (ağırlıkça %1, %2, %3, %4, %5 ) ilavesi ile nanokompozit filmler hazırlanmıştır. Elde edilen malzemelerin antibakteriyel aktivite testleri yapılmış, su buharı geçirgenlik özellikleri incelenmiş, ayrıca pH, şişme-çözünürlük-su içeriğine bakılmıştır. Su içerisinde şişme oranı ortalama %0,2437-2,1500 arasında belirlenirken, suda çözünürlük oranı % 0,1550-0,3100 aralığında olmuştur. Su sorpsiyonu ise % 0,6633-0,8917 aralığında değerler almıştır. 72 saat sonunda pH değerleri 7.23-7.29 aralıklarında ölçülmüş ve bu değer cilt pH’ı ile uyumludur. Son olarak su buharı geçirgenliği testinde 1381,9- 2,1357x10-10 g.m/(m2*Pa*s) aralığında değerler kaydedilmiştir. Bu değerlerde oldukça düşük bir su buharı geçirgenliğine sahip olduklarını göstermektedir.

Destekleyen Kurum

SELÇUK ÜNİVERSİTESİ BAP

Proje Numarası

21201074

Teşekkür

Bu çalışma Selçuk Üniversitesi Bap koordinatörlüğü tarafından 21201074 numaralı proje (Antibakteriyel özellikli Biyokompozit Filmlerin Hazırlanması ve Karakterizasyonu) ile desteklenmiştir.

Kaynakça

  • [1] A. Yasmin, J.J. Luo, J.L. Abot, and I.M. Daniel, “Mechanical and thermal behaviour of clay/epoxy nanocomposites”, Composites Science and Technology, vol. 66, pp. 2415-2422, 2006.
  • [2] V.Mittal, “Bio-nanocomposites: future high-value material”, in Nanocomposites with Biodegradable Polymers: Synthesis, Properties and Future Perspectives, V. Mittal, Ed., Oxford University Press, Oxford, 2011, pp. 1-27.
  • [3] H. Salam, and Y. Dong, “Property evaluation and material characterization of soybean oil modified bioepoxy/clay nanocomposites for environmental sustainability”, Materials Today Sustainability, vol. 5, e100012, 2019.
  • [4] V. Tanrattanakul, and P. Saithai, “Mechanical properties of bioplastics and bioplastic-organoclay nanocomposites prepared from epoxidized soybean oil with different epoxide contents”, Journal of Applied Polymer Science, vol. 114, no. 5, pp. 3057-3067, 2009.
  • [5] A. Ammar, A.W.M. Iling, K. Ramesh, and S. Ramesh, “Development of fully organic coating system modified with epoxidized soybean oil with superior corrosion protection performance”, Progress in Organic Coatings, vol. 140, e105523, 2020.
  • [6] S. J. Park, F. L. Jin, and J. R. Lee, “Synthesis and thermal properties of epoxidized vegetable oil”, Macromolecular Rapid Communications, vol. 25, no. 6, pp. 724- 727, 2004.
  • [7] H. Uyama, M. Kuwabara, T. Tsujimoto, M. Nakano, A. Usuki, and S. Kobayashi, “Organic-inorganic hybrids from renewable plant oils and clay”, Macromolecular Bioscience, vol. 4, no. 3, pp. 354-360, 2004.
  • [8] X. Ge, L. Yu, Z. Liu, H. Liu, Y. Chen, and L. Chen, “Developing acrylated epoxidized soybean oil coating for improving moisture sensitivity and permeability of starch-based film”, International Journal of Biological Macromolecules, vol. 125, pp. 370-375, 2019.
  • [9] C. Zhang, M. Yan, E.W. Cochran, and M.R. Kessler, “Biorenewable polymers based on acrylated epoxidized soybean oil and methacrylated vanillin”, Materials Today Communications, vol. 5, pp. 18-22, 2015.
  • [10] E. Baştürk, T. Inan, and A. Güngör, “Flame retardant UV-curable acrylated epoxidized soybean oil based organic–inorganic hybrid coating”, Progress in Organic Coatings, vol. 76, pp. 985-992, 2013.
  • [11] L.Q. Carrillo, S. Duart, N. Montanes, S. T. Giner, and R. Balart, “Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil”, Materials and Design, vol. 140, pp. 54-63, 2018.
  • [12] Y. Hu, P. Jia, Q. Shang, M. Zhang,G. Feng, C. Liu, and Y. Zhou, “Synthesis and application of UV-curable phosphorous-containing acrylated epoxidized soybean oil-based resins”, Journal of Bioresources and Bioproducts, vol. 4, no. 3, pp. 183–191, 2019.
  • [13] S. Kocaman, and G. Ahmetli, “A study of coating properties of biobased modified epoxy resin with different hardeners”, Progress in Organic Coatings, vol. 97, pp. 53-64, 2016.
  • [14] H.K. Güler, İ.E. Dönmez, and S.A. Aksoy, “Tıbbi ve aromatik bitkilerin antibakteriyel aktivitesi ve tekstil sektöründe kullanımı”, SDU Journal of Science (E-Journal), vol. 10, no. 2, pp. 27-34, 2015.
  • [15] S. Pavlidou, and C.D. Papaspyrides, “A review on polymer-layered silicate nanocomposites”, Progress in Polymer Science, vol. 33, pp. 1119–1198, 2008.
  • [16] S. Sedaghat, “Synthesis of clay-CNTs nanocomposite”, Journal of Nanostructure in Chemistry, vol. 3, pp. 3–6, 2013.
  • [17] M.W. Dewan, M.K. Hossain, M. Hosur, and S. Jeelani, “Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process”, Journal of Applied Polymer Science, vol. 128, pp. 4110–4123, 2013.
  • [18] M.F. Hossen, S. Hamdan, M.R. Rahman, M.M. Rahman, F.K. Liew, and J.C. Lai, “Effect of fiber treatment and nanoclay on the tensile properties of jute fiber reinforced polyethylene/clay nanocomposites”, Fibers and Polymers, vol. 16, pp. 479–485, 2015.
  • [19] B. Li, X. Zhang, J. Gao, Z. Song, G. Qi, Y. Liu, and J. Qiao, ”Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties”, Journal of Nanoscience and Nanotechnology, vol. 10, pp. 5864–5868, 2010.
  • [20] P.K. Kushwaha, and R. Kumar, “Reinforcing effect of nanoclay in bamboo-reinforced thermosetting resin composites”, Polymer-Plastics Technology and Engineering, vol. 50, pp. 127–135, 2011.
  • [21] F. Uddin, “Studies in finishing effects of clay mineral in polymers and synthetic fibers”, Advances in Materials Science and Engineering, vol. 2013, e243515, 2013.
  • [22] A. Cerit, S. Kocaman, and U. Soydal, “UV-cured coatings based on acrylated epoxidized soybean oil and epoxy carboxylate”, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol. 10, no. 4, pp. 447-450, 2016.
  • [23] H. Vural, and A. Öztan, “Effects of starter cultures on growth of Staphylococcus aureus in fermented meat products”, Gıda, Vol. 18, no. 4, pp. 259-263, 1993.
  • [24] A. Gülbandılar, “Kütahya yöresinde burun mukozasındaki Staphylococcus aureus taşıyıcılığının ve antibiyotik duyarlılığının ve antibiyotik duyarlılığının araştırılması”, Dumlupınar Üniversitesi Fen Bilimleri Dergisi, cilt. 18, cc. 1-6, 2009.
  • [25] R. Wang, Y. Liu, Q. Zhang, L. Jin, Q. Wang, Y. Zhang, X. Wang, M. Hu, L. Li, J. Qi, Y. Luo, and H. Wang, “The prevalence of colistin resistance in Escherichia coli and Klebsiella pneumoniae isolated from food animals in China: coexistence of mcr-1 and blaNDM with low fitness cost”, International Journal of Antimicrobial Agents, vol. 55 no. 5, pp. 739-744, 2018.
  • [26] N. Long, J. Deng, M. Qiu, Y. Zhang, Y. Wang, W. Guo, M. Dai, and L. Lin, “Inflammatory and pathological changes in Escherichia coli infected mice”, Heliyon, vol. 8, e12533, 2022.
  • [27] A. Alhazmi, “Pseudomonas aeruginosa – Pathogenesis and Pathogenic Mechanisms”, International Journal of Biology, vol. 7, no. 2, pp. 44-67, 2015.
  • [28] A. Azizi, C. Wagner, W. Friedt, and B. Honermeier,”Intraspecific diversity and relationship between subspecies of Origanum vulgare revealed by comparative AFLP and SAMPL marker analysis”, Plant Systematics and Evolution, vol. 281, pp. 151–160, 2009.
  • [29] B. Başyiğit, İ. Hayoğlu, and F. Atasoy, “Kekik esansiyel yağı ve mikroenkapsülasyon uygulamaları, Batman University Journal of Life Sciences”, Batman Üniversitesi Yaşam Bilimleri Dergisi, Cilt 7, ss. 63-70, 2017.
  • [30] Q. Wang, Y. Du, Q. Feng, F. Huang, K. Lu, J. Liu, and Q. Wei, “Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibers by electrospinning”, Journal of Applied Polymer Science, vol. 128, no. 2, pp. 1152-1157, 2013.
  • [31] M. Marino, C. Bersani, and G. Comi, “Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method”, Journal of Food Protection, vol. 62, no. 9, pp. 1017-1023, 1999.
  • [32] Y. Ozogul, E.K. Boga, I. Akyol, M. Durmus, and Y. Ucar, “Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens”, Food Bioscience, vol. 36, e100635, 2020.
  • [33] R. Moghimi, A. Aliahmadi, and H. Rafati, “Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging”, Carbohydrate Polymers, vol. 175, pp. 241–248, 2017.
  • [34] L.Y. Maroufi, M. Ghorbani, M. Mohammadi, and A. Pezeshki, “Improvement of the physico-mechanical properties of antibacterial electrospun poly lactic acid nanofibers by incorporation of guar gum and thyme essential oil”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 622, e126659, 2021.
  • [35] S. Biswas, and A. Satapathy, “A comparative study on erosion characteristics of red mud filled bamboo–epoxy and glass–epoxy composites”, Materials and Design,vol. 31, pp. 1752-1767, 2010.
  • [36] A. Hassan, M.B.K. Niazi, A. Hussain, S. Farrukh, and T. Ahmad, “Development of anti-bacterial PVA/starch based hydrogel membrane for wound dressing”, Journal of Polymers and the Environment, vol. 26, no. 1, pp. 235-243, 2018.
  • [37] F.N. Köroğlu, Nitrofenollerin iyonik ve iyonik olmayan organobentonitlerle adsorpsiyon ve desorpsiyonu, Y.L. Tezi, Ankara Üniversitesi, Ankara, 2004.
  • [38] M. Ghasemlou, N. Aliheidari, R. Fahmi, S. Shojaee-Aliabadi, B. Keshavarz, M.J. Cran, and R. Khaksar, “Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils”, Carbohydrate Polymers, vol. 98, no. 1, pp. 1117-1126, 2013.
  • [39] N. Devi, and J. Dutta, “Preparation and characterization of chitosan-bentonite nanocomposite films for wound healing application”, International Journal of Biological Macromolecules, vol. 104, pp. 1897-1904, 2017.
  • [40] N. Thongsrikhem, S. Taokaew, M. Sriariyanun, and S. Kirdponpattara, “Antibacterial activity in gelatin-bacterial cellulose composite film by thermally crosslinking with cinnamaldehyde towards food packaging application”, Food Packaging and Shelf Life, vol. 31, e100766, 2022.
  • [41] J.M. Krochta, “Control of mass transfer in food with edible coatings and films”,in Advanced in Food Engineering, R.P. Singh and M.A. Wirakartakusumah, Eds., Boca Raton, FL, CRC Press, pp. 517-538, 1992.
  • [42] Embuscado, M.E., and K.C. Huber, “Edible Films and Coatings for Food Applications”, Springer, London, pp. 1-56, 2009.

Investigation of the Properties of Biopolymer Composite Films Prepared with Thyme Oil

Yıl 2023, Cilt: 11 Sayı: 1, 247 - 260, 01.03.2023
https://doi.org/10.36306/konjes.1193618

Öz

In this study, to produce fully renewable and biodegradable composite films; acrylate epoxidized soybean oil (AESO) was used as the polymer matrix. Thyme oil (TO), an essential oil with proven antibacterial properties, was added to this biobased matrix structure at different rates (0, 1, 2, 3, 4, and 5 wt%). The antibacterial properties of the films obtained were examined and the most suitable ratio was determined. The antibacterial properties of the films were investigated and the most suitable TO ratio was determined. In the second stage of the study, the amount of TO was kept constant and nanocomposite films were obtained by adding nanoclay (NC) at different weight ratios (1, 2, 3, 4, and 5 wt%). The antibacterial activity tests of the obtained materials were carried out, their water vapor permeability properties were examined, and also pH, swelling-solubility-water content were examined. While the swelling ratio in water is determined between 0,2437-2,1500%, the water solubility ratio is between 0,1550-0,3100%. In water content, values were in the range of 0,6633-0,8917%. After 72 hours, pH values were measured between 7,23-7,29 and this value is compatible with skin pH. Finally, the values recorded in the range of 1381,9-2,1357x10-10 g.m/(m2*Pa*s) in the water vapor permeability test showed that the films had a very low water vapor permeability.

Proje Numarası

21201074

Kaynakça

  • [1] A. Yasmin, J.J. Luo, J.L. Abot, and I.M. Daniel, “Mechanical and thermal behaviour of clay/epoxy nanocomposites”, Composites Science and Technology, vol. 66, pp. 2415-2422, 2006.
  • [2] V.Mittal, “Bio-nanocomposites: future high-value material”, in Nanocomposites with Biodegradable Polymers: Synthesis, Properties and Future Perspectives, V. Mittal, Ed., Oxford University Press, Oxford, 2011, pp. 1-27.
  • [3] H. Salam, and Y. Dong, “Property evaluation and material characterization of soybean oil modified bioepoxy/clay nanocomposites for environmental sustainability”, Materials Today Sustainability, vol. 5, e100012, 2019.
  • [4] V. Tanrattanakul, and P. Saithai, “Mechanical properties of bioplastics and bioplastic-organoclay nanocomposites prepared from epoxidized soybean oil with different epoxide contents”, Journal of Applied Polymer Science, vol. 114, no. 5, pp. 3057-3067, 2009.
  • [5] A. Ammar, A.W.M. Iling, K. Ramesh, and S. Ramesh, “Development of fully organic coating system modified with epoxidized soybean oil with superior corrosion protection performance”, Progress in Organic Coatings, vol. 140, e105523, 2020.
  • [6] S. J. Park, F. L. Jin, and J. R. Lee, “Synthesis and thermal properties of epoxidized vegetable oil”, Macromolecular Rapid Communications, vol. 25, no. 6, pp. 724- 727, 2004.
  • [7] H. Uyama, M. Kuwabara, T. Tsujimoto, M. Nakano, A. Usuki, and S. Kobayashi, “Organic-inorganic hybrids from renewable plant oils and clay”, Macromolecular Bioscience, vol. 4, no. 3, pp. 354-360, 2004.
  • [8] X. Ge, L. Yu, Z. Liu, H. Liu, Y. Chen, and L. Chen, “Developing acrylated epoxidized soybean oil coating for improving moisture sensitivity and permeability of starch-based film”, International Journal of Biological Macromolecules, vol. 125, pp. 370-375, 2019.
  • [9] C. Zhang, M. Yan, E.W. Cochran, and M.R. Kessler, “Biorenewable polymers based on acrylated epoxidized soybean oil and methacrylated vanillin”, Materials Today Communications, vol. 5, pp. 18-22, 2015.
  • [10] E. Baştürk, T. Inan, and A. Güngör, “Flame retardant UV-curable acrylated epoxidized soybean oil based organic–inorganic hybrid coating”, Progress in Organic Coatings, vol. 76, pp. 985-992, 2013.
  • [11] L.Q. Carrillo, S. Duart, N. Montanes, S. T. Giner, and R. Balart, “Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil”, Materials and Design, vol. 140, pp. 54-63, 2018.
  • [12] Y. Hu, P. Jia, Q. Shang, M. Zhang,G. Feng, C. Liu, and Y. Zhou, “Synthesis and application of UV-curable phosphorous-containing acrylated epoxidized soybean oil-based resins”, Journal of Bioresources and Bioproducts, vol. 4, no. 3, pp. 183–191, 2019.
  • [13] S. Kocaman, and G. Ahmetli, “A study of coating properties of biobased modified epoxy resin with different hardeners”, Progress in Organic Coatings, vol. 97, pp. 53-64, 2016.
  • [14] H.K. Güler, İ.E. Dönmez, and S.A. Aksoy, “Tıbbi ve aromatik bitkilerin antibakteriyel aktivitesi ve tekstil sektöründe kullanımı”, SDU Journal of Science (E-Journal), vol. 10, no. 2, pp. 27-34, 2015.
  • [15] S. Pavlidou, and C.D. Papaspyrides, “A review on polymer-layered silicate nanocomposites”, Progress in Polymer Science, vol. 33, pp. 1119–1198, 2008.
  • [16] S. Sedaghat, “Synthesis of clay-CNTs nanocomposite”, Journal of Nanostructure in Chemistry, vol. 3, pp. 3–6, 2013.
  • [17] M.W. Dewan, M.K. Hossain, M. Hosur, and S. Jeelani, “Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process”, Journal of Applied Polymer Science, vol. 128, pp. 4110–4123, 2013.
  • [18] M.F. Hossen, S. Hamdan, M.R. Rahman, M.M. Rahman, F.K. Liew, and J.C. Lai, “Effect of fiber treatment and nanoclay on the tensile properties of jute fiber reinforced polyethylene/clay nanocomposites”, Fibers and Polymers, vol. 16, pp. 479–485, 2015.
  • [19] B. Li, X. Zhang, J. Gao, Z. Song, G. Qi, Y. Liu, and J. Qiao, ”Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties”, Journal of Nanoscience and Nanotechnology, vol. 10, pp. 5864–5868, 2010.
  • [20] P.K. Kushwaha, and R. Kumar, “Reinforcing effect of nanoclay in bamboo-reinforced thermosetting resin composites”, Polymer-Plastics Technology and Engineering, vol. 50, pp. 127–135, 2011.
  • [21] F. Uddin, “Studies in finishing effects of clay mineral in polymers and synthetic fibers”, Advances in Materials Science and Engineering, vol. 2013, e243515, 2013.
  • [22] A. Cerit, S. Kocaman, and U. Soydal, “UV-cured coatings based on acrylated epoxidized soybean oil and epoxy carboxylate”, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol. 10, no. 4, pp. 447-450, 2016.
  • [23] H. Vural, and A. Öztan, “Effects of starter cultures on growth of Staphylococcus aureus in fermented meat products”, Gıda, Vol. 18, no. 4, pp. 259-263, 1993.
  • [24] A. Gülbandılar, “Kütahya yöresinde burun mukozasındaki Staphylococcus aureus taşıyıcılığının ve antibiyotik duyarlılığının ve antibiyotik duyarlılığının araştırılması”, Dumlupınar Üniversitesi Fen Bilimleri Dergisi, cilt. 18, cc. 1-6, 2009.
  • [25] R. Wang, Y. Liu, Q. Zhang, L. Jin, Q. Wang, Y. Zhang, X. Wang, M. Hu, L. Li, J. Qi, Y. Luo, and H. Wang, “The prevalence of colistin resistance in Escherichia coli and Klebsiella pneumoniae isolated from food animals in China: coexistence of mcr-1 and blaNDM with low fitness cost”, International Journal of Antimicrobial Agents, vol. 55 no. 5, pp. 739-744, 2018.
  • [26] N. Long, J. Deng, M. Qiu, Y. Zhang, Y. Wang, W. Guo, M. Dai, and L. Lin, “Inflammatory and pathological changes in Escherichia coli infected mice”, Heliyon, vol. 8, e12533, 2022.
  • [27] A. Alhazmi, “Pseudomonas aeruginosa – Pathogenesis and Pathogenic Mechanisms”, International Journal of Biology, vol. 7, no. 2, pp. 44-67, 2015.
  • [28] A. Azizi, C. Wagner, W. Friedt, and B. Honermeier,”Intraspecific diversity and relationship between subspecies of Origanum vulgare revealed by comparative AFLP and SAMPL marker analysis”, Plant Systematics and Evolution, vol. 281, pp. 151–160, 2009.
  • [29] B. Başyiğit, İ. Hayoğlu, and F. Atasoy, “Kekik esansiyel yağı ve mikroenkapsülasyon uygulamaları, Batman University Journal of Life Sciences”, Batman Üniversitesi Yaşam Bilimleri Dergisi, Cilt 7, ss. 63-70, 2017.
  • [30] Q. Wang, Y. Du, Q. Feng, F. Huang, K. Lu, J. Liu, and Q. Wei, “Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibers by electrospinning”, Journal of Applied Polymer Science, vol. 128, no. 2, pp. 1152-1157, 2013.
  • [31] M. Marino, C. Bersani, and G. Comi, “Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method”, Journal of Food Protection, vol. 62, no. 9, pp. 1017-1023, 1999.
  • [32] Y. Ozogul, E.K. Boga, I. Akyol, M. Durmus, and Y. Ucar, “Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens”, Food Bioscience, vol. 36, e100635, 2020.
  • [33] R. Moghimi, A. Aliahmadi, and H. Rafati, “Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging”, Carbohydrate Polymers, vol. 175, pp. 241–248, 2017.
  • [34] L.Y. Maroufi, M. Ghorbani, M. Mohammadi, and A. Pezeshki, “Improvement of the physico-mechanical properties of antibacterial electrospun poly lactic acid nanofibers by incorporation of guar gum and thyme essential oil”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 622, e126659, 2021.
  • [35] S. Biswas, and A. Satapathy, “A comparative study on erosion characteristics of red mud filled bamboo–epoxy and glass–epoxy composites”, Materials and Design,vol. 31, pp. 1752-1767, 2010.
  • [36] A. Hassan, M.B.K. Niazi, A. Hussain, S. Farrukh, and T. Ahmad, “Development of anti-bacterial PVA/starch based hydrogel membrane for wound dressing”, Journal of Polymers and the Environment, vol. 26, no. 1, pp. 235-243, 2018.
  • [37] F.N. Köroğlu, Nitrofenollerin iyonik ve iyonik olmayan organobentonitlerle adsorpsiyon ve desorpsiyonu, Y.L. Tezi, Ankara Üniversitesi, Ankara, 2004.
  • [38] M. Ghasemlou, N. Aliheidari, R. Fahmi, S. Shojaee-Aliabadi, B. Keshavarz, M.J. Cran, and R. Khaksar, “Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils”, Carbohydrate Polymers, vol. 98, no. 1, pp. 1117-1126, 2013.
  • [39] N. Devi, and J. Dutta, “Preparation and characterization of chitosan-bentonite nanocomposite films for wound healing application”, International Journal of Biological Macromolecules, vol. 104, pp. 1897-1904, 2017.
  • [40] N. Thongsrikhem, S. Taokaew, M. Sriariyanun, and S. Kirdponpattara, “Antibacterial activity in gelatin-bacterial cellulose composite film by thermally crosslinking with cinnamaldehyde towards food packaging application”, Food Packaging and Shelf Life, vol. 31, e100766, 2022.
  • [41] J.M. Krochta, “Control of mass transfer in food with edible coatings and films”,in Advanced in Food Engineering, R.P. Singh and M.A. Wirakartakusumah, Eds., Boca Raton, FL, CRC Press, pp. 517-538, 1992.
  • [42] Embuscado, M.E., and K.C. Huber, “Edible Films and Coatings for Food Applications”, Springer, London, pp. 1-56, 2009.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ülkü Soydal 0000-0001-8894-3940

Fadim Söylemez Günbattı 0000-0002-0435-8187

Proje Numarası 21201074
Yayımlanma Tarihi 1 Mart 2023
Gönderilme Tarihi 24 Ekim 2022
Kabul Tarihi 3 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 1

Kaynak Göster

IEEE Ü. Soydal ve F. Söylemez Günbattı, “KEKİK YAĞI İLE HAZIRLANMIŞ BİYOPOLİMER KOMPOZİT FİLMLER VE ÖZELLİKLERİNİN İNCELENMESİ”, KONJES, c. 11, sy. 1, ss. 247–260, 2023, doi: 10.36306/konjes.1193618.