ON THE INVOLUTES FOR DUAL SPLIT QUATERNIONIC CURVES
Year 2015,
Volume: 3 Issue: 2, 190 - 201, 01.10.2015
Cumali Ekıcı
,
Hatice Tozak
Abstract
In this study, de nition of involute-evolute curves for semi-dual quaternionic curves in semi-dual spaces D42 known as dual split quaternion and D31 are given and also some well-known theorems for involute-evolute dual split quaternionic curves are obtained.
References
- [1] Bharathi, K. and Nagaraj, M. Quaternion valued function of a real variable Serret-Frenet
formula, Indian Journal of Pure and Applied Mathematics 18: (1987), 507-511.
- [2] Bilici, M. and C alskan, M., On the Involutes of the Spacelike Curve with a Timelike Binormal
in Minkowski 3-Space, International Mathematical Forum, 4 no 31 (2009), 1497-1509.
- [3] Blaschke, W., Diferensiyel Geometri Dersleri, _Istanbul Universitesi Yaynlar, 1949.
- [4] Boyer, C., A History of Mathematics, New York: Wiley, 1968.
- [5] Bukcu, B. and Karacan, M.K., On the Involute and Evolute Curves of the Spacelike Curve
with a Spacelike Binormal in Minkowski 3-space, Int. J. Math. Sciences, 2(5): (2007), 221-232.
- [6] Clifford, W. K., Preliminary skecth of biquaternions, Proceedings of London Math. Soc. 4,
(1873), 361-395.
- [7] Çöken, A.C., Ekici, C., Kocayusufoglu, _I. and Gorgulu, A., Formulas for dual split quaternionic
curves, Kuwait J. Sci. Eng.1A(36): (2009), 1-14
- [8] Çöken, A.C. and Tuna, A., On the quaternionic inclined curves in the semi-Euclidean space
E42
, Applied Mathematics and Computation 155(2): (2004), 373-389.
- [9] do Carmo, M.P., Dierential Geometry of Curves and Surfaces, 1976.
- [10] Hacsalihoglu, H. H., Hareket Geometrisi ve Kuaterniyonlar Teorisi, Gazi Universitesi, Fen-
Edebiyat Fakultesi Yayinlari 2, 1983.
- [11] Inoguchi, J., Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo
Journal of Mathematics 21(1): (1998), 141-152.
- [12] Kecilioglu, O. and Gundogan, H., Dual split quaternions and motions in Lorentz space R31
, Far East Journal of Mathematical Sciences (FJMS) 24(3): (2007), 425-437.
- [13] Kobayashi, S. and Nomizu, K., Foundations of dierential geometry, Vol. I, John Wiley Sons
Inc. Lcccn: (1963), 63-19209.
- [14] Kuhnel, W., Dierential Geometry, Curves-Surfaces-Manifolds, American Mathematical Society,
2002.
- [15] Lopez, R., Dierential geometry of curves and surfaces in Lorentz-Minkowski space, Mini-
Course taught at the Instituto de Matematica e Estatistica (IME-USP), University of Sao
Paulo, Brasil, 2008.
- [16] Nizamoglu, S., Surfaces reglees paralleles, Ege Univ. Fen Fak. Derg., 9 (Ser. A), (1986), 37-48.
- [17] O'Neill, B., Semi Riemannian Geometry with Applications to Relativity, Academic Press,
Inc. New York, 1983.
- [18] O'Neill, B., Elementary Dierential Geometry, Academic Press, Inc. New York, 2006.
- [19] Ozylmaz, E. and Ylmaz, S., Involute-Evolute Curve Couples in the Euclidean 4-Space, Int.
J. Open Problems Compt.Math., vol.2 No.2, (2009).
- [20] Ozdemir, M. and Ergin, A. A., Rotations with unit timelike quaternions in Minkowski 3-space,
Journal of Geometry and Physics 56: (2006), 322-336.
- [21] Sivridag, A._I., Gunes, R. and Keles, S., The Serret-Frenet formulae for dual-valued functions
of a single real variable, Mechanism and Machine Theory 29: (1994), 749-754.
- [22] Study, E., Geometrie der Dynamen, Leipzig, Teubner, 1903.
- [23] Turgut, M. and Yilmaz,S., On The Frenet Frame and A Characterization of space-like
Involute-Evolute Curve Couple in Minkowski Space-time, Int. Math. Forum 3(16): (2008),
793-801.
- [24] Ugurlu, H.H. and C alskan , A., The study mapping for directed space-like and time-like
line in Minkowski 3-space R31
, Mathematical and ComputationalApplications 1(2): (1996),
142-148.
- [25] Veldkamp, G. R., On the use of dual numbers, vectors and matrices in instantaneous spatial
kinematics, Mechanism and Machine Theory 11: (1976), 141-156.
- [26] Willmore, T.J., Riemannian Geometry, Published in the United States by Oxford University
Press Inc., Newyork, 1993.
Year 2015,
Volume: 3 Issue: 2, 190 - 201, 01.10.2015
Cumali Ekıcı
,
Hatice Tozak
References
- [1] Bharathi, K. and Nagaraj, M. Quaternion valued function of a real variable Serret-Frenet
formula, Indian Journal of Pure and Applied Mathematics 18: (1987), 507-511.
- [2] Bilici, M. and C alskan, M., On the Involutes of the Spacelike Curve with a Timelike Binormal
in Minkowski 3-Space, International Mathematical Forum, 4 no 31 (2009), 1497-1509.
- [3] Blaschke, W., Diferensiyel Geometri Dersleri, _Istanbul Universitesi Yaynlar, 1949.
- [4] Boyer, C., A History of Mathematics, New York: Wiley, 1968.
- [5] Bukcu, B. and Karacan, M.K., On the Involute and Evolute Curves of the Spacelike Curve
with a Spacelike Binormal in Minkowski 3-space, Int. J. Math. Sciences, 2(5): (2007), 221-232.
- [6] Clifford, W. K., Preliminary skecth of biquaternions, Proceedings of London Math. Soc. 4,
(1873), 361-395.
- [7] Çöken, A.C., Ekici, C., Kocayusufoglu, _I. and Gorgulu, A., Formulas for dual split quaternionic
curves, Kuwait J. Sci. Eng.1A(36): (2009), 1-14
- [8] Çöken, A.C. and Tuna, A., On the quaternionic inclined curves in the semi-Euclidean space
E42
, Applied Mathematics and Computation 155(2): (2004), 373-389.
- [9] do Carmo, M.P., Dierential Geometry of Curves and Surfaces, 1976.
- [10] Hacsalihoglu, H. H., Hareket Geometrisi ve Kuaterniyonlar Teorisi, Gazi Universitesi, Fen-
Edebiyat Fakultesi Yayinlari 2, 1983.
- [11] Inoguchi, J., Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo
Journal of Mathematics 21(1): (1998), 141-152.
- [12] Kecilioglu, O. and Gundogan, H., Dual split quaternions and motions in Lorentz space R31
, Far East Journal of Mathematical Sciences (FJMS) 24(3): (2007), 425-437.
- [13] Kobayashi, S. and Nomizu, K., Foundations of dierential geometry, Vol. I, John Wiley Sons
Inc. Lcccn: (1963), 63-19209.
- [14] Kuhnel, W., Dierential Geometry, Curves-Surfaces-Manifolds, American Mathematical Society,
2002.
- [15] Lopez, R., Dierential geometry of curves and surfaces in Lorentz-Minkowski space, Mini-
Course taught at the Instituto de Matematica e Estatistica (IME-USP), University of Sao
Paulo, Brasil, 2008.
- [16] Nizamoglu, S., Surfaces reglees paralleles, Ege Univ. Fen Fak. Derg., 9 (Ser. A), (1986), 37-48.
- [17] O'Neill, B., Semi Riemannian Geometry with Applications to Relativity, Academic Press,
Inc. New York, 1983.
- [18] O'Neill, B., Elementary Dierential Geometry, Academic Press, Inc. New York, 2006.
- [19] Ozylmaz, E. and Ylmaz, S., Involute-Evolute Curve Couples in the Euclidean 4-Space, Int.
J. Open Problems Compt.Math., vol.2 No.2, (2009).
- [20] Ozdemir, M. and Ergin, A. A., Rotations with unit timelike quaternions in Minkowski 3-space,
Journal of Geometry and Physics 56: (2006), 322-336.
- [21] Sivridag, A._I., Gunes, R. and Keles, S., The Serret-Frenet formulae for dual-valued functions
of a single real variable, Mechanism and Machine Theory 29: (1994), 749-754.
- [22] Study, E., Geometrie der Dynamen, Leipzig, Teubner, 1903.
- [23] Turgut, M. and Yilmaz,S., On The Frenet Frame and A Characterization of space-like
Involute-Evolute Curve Couple in Minkowski Space-time, Int. Math. Forum 3(16): (2008),
793-801.
- [24] Ugurlu, H.H. and C alskan , A., The study mapping for directed space-like and time-like
line in Minkowski 3-space R31
, Mathematical and ComputationalApplications 1(2): (1996),
142-148.
- [25] Veldkamp, G. R., On the use of dual numbers, vectors and matrices in instantaneous spatial
kinematics, Mechanism and Machine Theory 11: (1976), 141-156.
- [26] Willmore, T.J., Riemannian Geometry, Published in the United States by Oxford University
Press Inc., Newyork, 1993.