Araştırma Makalesi
BibTex RIS Kaynak Göster

ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS

Yıl 2015, Cilt: 3 Sayı: 2, 245 - 253, 01.10.2015

Öz

In this paper, we investigate some properties of invariant submanifolds of almost $\alpha$-cosymplectic f- manifolds. We show that every invariant submanifold of an almost $\alpha$-cosymplectic f- manifold with Kaehlerian leaves is also an almost $\alpha$-cosymplectic f- manifold with Kaehlerian leaves. Moreover, we give a theorem on minimal invariant submanifold and obtain a necessary condition on a invariant submanifold to be totally geodesic. Finally, we study some properties of the curvature tensors of M and fM.

Kaynakça

  • [1] Arslan K., Lumiste C., Murathan C. and Ozgur C., 2- semiparallel Surfaces in Space Forms. I. Two Particular Cases, Proc. Estonian Acad. Sci Phys. Math., 49(3), (2000), 139-148.
  • [2] Blair D.E., Geometry of manifolds with structural group U(n)  O(s), J. Di erential Geometry, 4(1970), 155-167.
  • [3] Chen B.Y., Geometry of submanifolds, Marcel Dekker Inc., New York, (1973).
  • [4] Chinea D., Prestelo P.S., Invariant submanifolds of a trans-Sasakian manifolds. Publ. Mat. Debrecen, 38/1-2 (1991), 103-109.
  • [5] Endo H., Invariant submanifolds in contact metric manifolds, Tensor (N.S.) 43 (1) (1886), pp. 193-202.
  • [6] Erken K.I, Dacko P. and Murathan C., Almost -paracosymplectic manifolds, arxiv: 1402.6930v1 [Math:DG] 27 Feb 2014.
  • [7]  Ozturk H., Murathan C., Aktan N., Vanli A.T., Almost -cosymplectic f-manifolds Analele stntfce ale unverstat 'AI.I Cuza' D as (S.N.) Matematica, Tomul LX, f.1., (2014).
  • [8] Kon M., Invariant submanifolds of normal contact metric manifolds, Kodai Math. Sem. Rep., 27, (1973), 330-336.
  • [9] Terlizi L. D., On invariant submanifolds of C and S-manifolds. Acta Math. Hungar. 85(3), (1999), 229-239.
  • [10] Sarkar A. and Sen M., On invariant submanifold of trans- sasakian manifolds, Proceedings of the Estonian Academy of Sciences, 61(1), (2012), 29-37.
  • [11] De A., Totally geodesic submanifolds of a trans-Sasakian manifold, Proceedings of the Estonian Academy of Sciences, 62(4), (2013), 249-257.
  • [12] Yano K. and Kon M., Structures on manifolds. World Scienti c, Singapore (1984).
  • [13] Yano K., On a structure de ned by a tensor f of type (1; 1) satisfying '3 + ' = 0, tensor N S., 14, (1963), 99-109.
Yıl 2015, Cilt: 3 Sayı: 2, 245 - 253, 01.10.2015

Öz

Kaynakça

  • [1] Arslan K., Lumiste C., Murathan C. and Ozgur C., 2- semiparallel Surfaces in Space Forms. I. Two Particular Cases, Proc. Estonian Acad. Sci Phys. Math., 49(3), (2000), 139-148.
  • [2] Blair D.E., Geometry of manifolds with structural group U(n)  O(s), J. Di erential Geometry, 4(1970), 155-167.
  • [3] Chen B.Y., Geometry of submanifolds, Marcel Dekker Inc., New York, (1973).
  • [4] Chinea D., Prestelo P.S., Invariant submanifolds of a trans-Sasakian manifolds. Publ. Mat. Debrecen, 38/1-2 (1991), 103-109.
  • [5] Endo H., Invariant submanifolds in contact metric manifolds, Tensor (N.S.) 43 (1) (1886), pp. 193-202.
  • [6] Erken K.I, Dacko P. and Murathan C., Almost -paracosymplectic manifolds, arxiv: 1402.6930v1 [Math:DG] 27 Feb 2014.
  • [7]  Ozturk H., Murathan C., Aktan N., Vanli A.T., Almost -cosymplectic f-manifolds Analele stntfce ale unverstat 'AI.I Cuza' D as (S.N.) Matematica, Tomul LX, f.1., (2014).
  • [8] Kon M., Invariant submanifolds of normal contact metric manifolds, Kodai Math. Sem. Rep., 27, (1973), 330-336.
  • [9] Terlizi L. D., On invariant submanifolds of C and S-manifolds. Acta Math. Hungar. 85(3), (1999), 229-239.
  • [10] Sarkar A. and Sen M., On invariant submanifold of trans- sasakian manifolds, Proceedings of the Estonian Academy of Sciences, 61(1), (2012), 29-37.
  • [11] De A., Totally geodesic submanifolds of a trans-Sasakian manifold, Proceedings of the Estonian Academy of Sciences, 62(4), (2013), 249-257.
  • [12] Yano K. and Kon M., Structures on manifolds. World Scienti c, Singapore (1984).
  • [13] Yano K., On a structure de ned by a tensor f of type (1; 1) satisfying '3 + ' = 0, tensor N S., 14, (1963), 99-109.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Selahattin Beyendı

Nesip Aktan

Ali İhsan Sıvrıdağ Bu kişi benim

Yayımlanma Tarihi 1 Ekim 2015
Gönderilme Tarihi 10 Temmuz 2014
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 2

Kaynak Göster

APA Beyendı, S., Aktan, N., & Sıvrıdağ, A. İ. (2015). ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS. Konuralp Journal of Mathematics, 3(2), 245-253.
AMA Beyendı S, Aktan N, Sıvrıdağ Aİ. ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS. Konuralp J. Math. Ekim 2015;3(2):245-253.
Chicago Beyendı, Selahattin, Nesip Aktan, ve Ali İhsan Sıvrıdağ. “ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS”. Konuralp Journal of Mathematics 3, sy. 2 (Ekim 2015): 245-53.
EndNote Beyendı S, Aktan N, Sıvrıdağ Aİ (01 Ekim 2015) ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS. Konuralp Journal of Mathematics 3 2 245–253.
IEEE S. Beyendı, N. Aktan, ve A. İ. Sıvrıdağ, “ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS”, Konuralp J. Math., c. 3, sy. 2, ss. 245–253, 2015.
ISNAD Beyendı, Selahattin vd. “ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS”. Konuralp Journal of Mathematics 3/2 (Ekim 2015), 245-253.
JAMA Beyendı S, Aktan N, Sıvrıdağ Aİ. ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS. Konuralp J. Math. 2015;3:245–253.
MLA Beyendı, Selahattin vd. “ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS”. Konuralp Journal of Mathematics, c. 3, sy. 2, 2015, ss. 245-53.
Vancouver Beyendı S, Aktan N, Sıvrıdağ Aİ. ON INVARIANT SUBMANIFOLDS OF ALMOST $\alpha$-COSYMPLECTIC $f$-MANIFOLDS. Konuralp J. Math. 2015;3(2):245-53.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.