Araştırma Makalesi
BibTex RIS Kaynak Göster

FIBONACCI AND LUCAS SEQUENCES AT NEGATIVE INDICES

Yıl 2016, Cilt: 4 Sayı: 1, 172 - 178, 01.04.2016

Öz

This study investigate the Fibonacci and Lucas sequences at neg- ative indices. In this paper we give the formulas of F􀀀(nk+r) and L􀀀(nk+r) depending on whether the indices are odd or even. For this purpose we con- sider a special matrix and we give various combinatorial identities related with the Fibonacci and Lucas sequences by using the matrix method. Some of the resulting identities are well known identities in the literature, but some of these are new.

Kaynakça

  • [1] Akyuz, Z. Halici, S., On Some Combinatorial Identities Involving The Terms of Generalized Fibonacci and Lucas Sequences, Hacettepe Journal of Math. And Statistics 42(4), 431-435, 2013.
  • [2] Freitag, Herta. On Summations and Expansions of Fibonacci Numbers, The Fibonacci Quar- terly, 11(1), 63-71, 1973.
  • [3] Halici, S., Akyuz, Z.., Some Identities Deriving From the nth Power of Special Matrix, Advances in Di erence Equations. doi:10.1186/1687-1847-2012-223, 2012.
  • [4] Koken, F. Bozkurt, D.,On Lucas Numbers by The Matrix Method, Hacettepe Journal of Mathematics and Statistics, 39(4), 471-475, 2010.
  • [5] Koshy, T., Fibonacci and Lucas Numbers With Applications, A. Wiley-Interscience Publica- tion, 2001.
  • [6] Latushkin, Yaroslav, and Vladimir Ushakov. A representation of regular subsequences of recurrent sequences, Fibonacci Quart. 43(1), 70-84, 2005.
  • [7] Laughlin, J.,Combinatorial Identities Deriving From the Power of a Matrix, Integer : Elec- tronic J. of Combinatorial Number Theory 4, 1-15, 2004.
  • [8] Laughlin, J.,Further Combinatorial Identities Deriving From the Power of a Matrix, Discrete Applied Mathematics, 154 , 1301-1308, 2006.
  • [9] Mansour, Tou k. Generalizations of some identities involving the Fibonacci numbers, arXiv preprint math/0301157, 2003.
  • [10] Melham, R. S , Shannon A. G. Some Summation Identities Using Generalized Q -Matrices, The Fibonacci Quarterly, 33(1), 64-73, 1995.
  • [11] Vajda, S. Fibonacci, Lucas numbers, and the golden section, Theory and Applications. Ellis Horwood Limited; 1989.
  • [12] Zhang, Wenpeng. Some identities involving the Fibonacci numbers and Lucas numbers, Fibonacci Quart., 42, 149-154, 2004.
Yıl 2016, Cilt: 4 Sayı: 1, 172 - 178, 01.04.2016

Öz

Kaynakça

  • [1] Akyuz, Z. Halici, S., On Some Combinatorial Identities Involving The Terms of Generalized Fibonacci and Lucas Sequences, Hacettepe Journal of Math. And Statistics 42(4), 431-435, 2013.
  • [2] Freitag, Herta. On Summations and Expansions of Fibonacci Numbers, The Fibonacci Quar- terly, 11(1), 63-71, 1973.
  • [3] Halici, S., Akyuz, Z.., Some Identities Deriving From the nth Power of Special Matrix, Advances in Di erence Equations. doi:10.1186/1687-1847-2012-223, 2012.
  • [4] Koken, F. Bozkurt, D.,On Lucas Numbers by The Matrix Method, Hacettepe Journal of Mathematics and Statistics, 39(4), 471-475, 2010.
  • [5] Koshy, T., Fibonacci and Lucas Numbers With Applications, A. Wiley-Interscience Publica- tion, 2001.
  • [6] Latushkin, Yaroslav, and Vladimir Ushakov. A representation of regular subsequences of recurrent sequences, Fibonacci Quart. 43(1), 70-84, 2005.
  • [7] Laughlin, J.,Combinatorial Identities Deriving From the Power of a Matrix, Integer : Elec- tronic J. of Combinatorial Number Theory 4, 1-15, 2004.
  • [8] Laughlin, J.,Further Combinatorial Identities Deriving From the Power of a Matrix, Discrete Applied Mathematics, 154 , 1301-1308, 2006.
  • [9] Mansour, Tou k. Generalizations of some identities involving the Fibonacci numbers, arXiv preprint math/0301157, 2003.
  • [10] Melham, R. S , Shannon A. G. Some Summation Identities Using Generalized Q -Matrices, The Fibonacci Quarterly, 33(1), 64-73, 1995.
  • [11] Vajda, S. Fibonacci, Lucas numbers, and the golden section, Theory and Applications. Ellis Horwood Limited; 1989.
  • [12] Zhang, Wenpeng. Some identities involving the Fibonacci numbers and Lucas numbers, Fibonacci Quart., 42, 149-154, 2004.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Serpil Halıcı

Zeynep Akyüz Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2016
Gönderilme Tarihi 10 Temmuz 2014
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 1

Kaynak Göster

APA Halıcı, S., & Akyüz, Z. (2016). FIBONACCI AND LUCAS SEQUENCES AT NEGATIVE INDICES. Konuralp Journal of Mathematics, 4(1), 172-178.
AMA Halıcı S, Akyüz Z. FIBONACCI AND LUCAS SEQUENCES AT NEGATIVE INDICES. Konuralp J. Math. Nisan 2016;4(1):172-178.
Chicago Halıcı, Serpil, ve Zeynep Akyüz. “FIBONACCI AND LUCAS SEQUENCES AT NEGATIVE INDICES”. Konuralp Journal of Mathematics 4, sy. 1 (Nisan 2016): 172-78.
EndNote Halıcı S, Akyüz Z (01 Nisan 2016) FIBONACCI AND LUCAS SEQUENCES AT NEGATIVE INDICES. Konuralp Journal of Mathematics 4 1 172–178.
IEEE S. Halıcı ve Z. Akyüz, “FIBONACCI AND LUCAS SEQUENCES AT NEGATIVE INDICES”, Konuralp J. Math., c. 4, sy. 1, ss. 172–178, 2016.
ISNAD Halıcı, Serpil - Akyüz, Zeynep. “FIBONACCI AND LUCAS SEQUENCES AT NEGATIVE INDICES”. Konuralp Journal of Mathematics 4/1 (Nisan 2016), 172-178.
JAMA Halıcı S, Akyüz Z. FIBONACCI AND LUCAS SEQUENCES AT NEGATIVE INDICES. Konuralp J. Math. 2016;4:172–178.
MLA Halıcı, Serpil ve Zeynep Akyüz. “FIBONACCI AND LUCAS SEQUENCES AT NEGATIVE INDICES”. Konuralp Journal of Mathematics, c. 4, sy. 1, 2016, ss. 172-8.
Vancouver Halıcı S, Akyüz Z. FIBONACCI AND LUCAS SEQUENCES AT NEGATIVE INDICES. Konuralp J. Math. 2016;4(1):172-8.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.