Araştırma Makalesi
BibTex RIS Kaynak Göster

ON THE PARANORMED TAYLOR SEQUENCE SPACES

Yıl 2016, Cilt: 4 Sayı: 2, 132 - 148, 01.10.2016

Öz

In this paper, the sequence spaces $t^r_0(p)$, $t^r_c(p)$ and $t^r(p)$ of non-absolute type which are the generalization of the Maddox \ sequence spaces have \ been introduced and it is proved that the spaces $t^r_0(p)$, $t^r_c(p)$ and $t^r(p)$ are linearly isomorphic to spaces $c_0(p)$, $c(p)$ and $\ell(p)$, respectively. Furthermore, the $\alpha-,\beta-$ and $\gamma-$duals of the spaces $t^r_0(p)$, $t^r_c(p)$ and $t^r(p)$ have been computed and their bases have been constructed and some topological properties of these spaces have been investigated. Besides this, the \ class of matrices $(t^r_0(p) : \mu)$ has been characterized, where $\mu$ is one of the sequence spaces $\ell_\infty,c$ and $c_0$ and derives the other characterizations for the special cases of $\mu$.

Kaynakça

  • [1] B. Altay, F. Basar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 26, 701-715 (2002).
  • [2] B. Altay, F. Basar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30, 591-608 (2006).
  • [3] F. Basar, B. Altay, Matrix mappings on the space $bs(p)$ and its $\alpha-, \beta-$ and $\gamma-$duals, Aligarh Bull. Math., 21(1), 79-91 (2002).
  • [4] F. Basar, In nite matrices and almost boundedness, Boll. Un. Mat. Ital., 6(7), 395-402 (1992).
  • [5] B. Choudhary, S. K. Mishra, On Kothe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24(5), 291-301 (1993).
  • [6] S. Demiriz, C. Cakan, On Some New Paranormed Euler Sequence Spaces and Euler Core, Acta Math. Sin.(Eng. Ser.), 26(7), 1207-1222 (2010).
  • [7] K. G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox. J. Math. Anal. Appl., 180, 223-238 (1993).
  • [8] A. Jarrah and E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo, 52(2), 177-191 (1990).
  • [9] M. Kirisci, On the Taylor sequence spaces of nonabsulate type which include the spaces c0 and c. J. Math. Anal., 6(2), 22-35 (2015).
  • [10] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc.Camb. Phil. Soc., 68, 99-104 (1970).
  • [11] I.J. Maddox, Elements of Functional Analysis, second ed., The University Press, Cambridge, 1988.
  • [12] I. J. Maddox, Paranormed sequence spaces generated by in nite matrices, Proc. Camb. Phios. Soc., 64, 335-340 (1968).
  • [13] H. Nakano, Modulared sequence spaces, Proc. Jpn. Acad., 27(2), 508-512 (1951).
  • [14] S. Simons, The sequence spaces `(pv) and m(pv). Proc. London Math. Soc., 15(3), 422-436 (1965).
Yıl 2016, Cilt: 4 Sayı: 2, 132 - 148, 01.10.2016

Öz

Kaynakça

  • [1] B. Altay, F. Basar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 26, 701-715 (2002).
  • [2] B. Altay, F. Basar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30, 591-608 (2006).
  • [3] F. Basar, B. Altay, Matrix mappings on the space $bs(p)$ and its $\alpha-, \beta-$ and $\gamma-$duals, Aligarh Bull. Math., 21(1), 79-91 (2002).
  • [4] F. Basar, In nite matrices and almost boundedness, Boll. Un. Mat. Ital., 6(7), 395-402 (1992).
  • [5] B. Choudhary, S. K. Mishra, On Kothe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24(5), 291-301 (1993).
  • [6] S. Demiriz, C. Cakan, On Some New Paranormed Euler Sequence Spaces and Euler Core, Acta Math. Sin.(Eng. Ser.), 26(7), 1207-1222 (2010).
  • [7] K. G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox. J. Math. Anal. Appl., 180, 223-238 (1993).
  • [8] A. Jarrah and E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo, 52(2), 177-191 (1990).
  • [9] M. Kirisci, On the Taylor sequence spaces of nonabsulate type which include the spaces c0 and c. J. Math. Anal., 6(2), 22-35 (2015).
  • [10] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc.Camb. Phil. Soc., 68, 99-104 (1970).
  • [11] I.J. Maddox, Elements of Functional Analysis, second ed., The University Press, Cambridge, 1988.
  • [12] I. J. Maddox, Paranormed sequence spaces generated by in nite matrices, Proc. Camb. Phios. Soc., 64, 335-340 (1968).
  • [13] H. Nakano, Modulared sequence spaces, Proc. Jpn. Acad., 27(2), 508-512 (1951).
  • [14] S. Simons, The sequence spaces `(pv) and m(pv). Proc. London Math. Soc., 15(3), 422-436 (1965).
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

HACER BILGIN Ellıdokuzoglu

SERKAN Demırız

Yayımlanma Tarihi 1 Ekim 2016
Gönderilme Tarihi 4 Mayıs 2015
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 2

Kaynak Göster

APA Ellıdokuzoglu, H. B., & Demırız, S. (2016). ON THE PARANORMED TAYLOR SEQUENCE SPACES. Konuralp Journal of Mathematics, 4(2), 132-148.
AMA Ellıdokuzoglu HB, Demırız S. ON THE PARANORMED TAYLOR SEQUENCE SPACES. Konuralp J. Math. Ekim 2016;4(2):132-148.
Chicago Ellıdokuzoglu, HACER BILGIN, ve SERKAN Demırız. “ON THE PARANORMED TAYLOR SEQUENCE SPACES”. Konuralp Journal of Mathematics 4, sy. 2 (Ekim 2016): 132-48.
EndNote Ellıdokuzoglu HB, Demırız S (01 Ekim 2016) ON THE PARANORMED TAYLOR SEQUENCE SPACES. Konuralp Journal of Mathematics 4 2 132–148.
IEEE H. B. Ellıdokuzoglu ve S. Demırız, “ON THE PARANORMED TAYLOR SEQUENCE SPACES”, Konuralp J. Math., c. 4, sy. 2, ss. 132–148, 2016.
ISNAD Ellıdokuzoglu, HACER BILGIN - Demırız, SERKAN. “ON THE PARANORMED TAYLOR SEQUENCE SPACES”. Konuralp Journal of Mathematics 4/2 (Ekim 2016), 132-148.
JAMA Ellıdokuzoglu HB, Demırız S. ON THE PARANORMED TAYLOR SEQUENCE SPACES. Konuralp J. Math. 2016;4:132–148.
MLA Ellıdokuzoglu, HACER BILGIN ve SERKAN Demırız. “ON THE PARANORMED TAYLOR SEQUENCE SPACES”. Konuralp Journal of Mathematics, c. 4, sy. 2, 2016, ss. 132-48.
Vancouver Ellıdokuzoglu HB, Demırız S. ON THE PARANORMED TAYLOR SEQUENCE SPACES. Konuralp J. Math. 2016;4(2):132-48.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.