In this paper the authors introduce a new class of preinvexity called $(s, r)$-preinvex functions in the second sense and establish some new Hadamard-type inequalities.
1] A.O. Akdemir and M. Tunc, On some integral inequalities for s-logarithmically convex functions and their applications, arXiv: 1212.1584v1[math.FA] 7 Dec 2012.
[2] T. Antczak, r-preinvexity and r-invexity in mathematical programming. Comput. Math. Appl. 50 (2005), no. 3-4, 551{566.
[3] M. Avriel, r-convex functions. Math. Programming 2 (1972), 309-323.
[4] R. F. Bai, F. Qi, and B. Y. Xi, Hermite-Hadamard type inequalities for the m- and (alpha,m)- logarithmically convex functions. Filomat 27 (2013), no. 1, 1-7.
[5] A. Barani, A.G. Ghazanfari and S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, RGMIA Research Report Collection, 14 (2011), Article 64, 11 pp.
[6] A. Barani, A. G. Ghazanfari and S. S. Dragomir, Hermite-Hadamard inequality through prequasi invex functions, RGMIA Research Report Collection, 14 (2011), Article 48, 7 pp.
[7] A. Ben-Israel and B. Mond, What is invexity? J. Austral. Math. Soc. Ser. B 28 (1986), no. 1, 1-9.
[8] W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20.
[9] S. S. Dragomir, J. E. Pecaric and L. E. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335-341.
[10] S. S. Dragomir and S. Fitzpatrik, The Hadamard's inequality for s-convex functions in the second sense, Demonstration Math. 32 (1999), no. 4, 687{696.
[11] M. A. Hanson, On suciency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), no. 2, 545-550.
[12] M. A. Latif and M. Shoaib, Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (alpha;m)-preinvex functions. J. Egyptian Math. Soc. 23 (2015), no. 2, 236-241.
[13] Li Jue-You, On Hadamard-type inequalities for s-preinvex func-tions. Journal of Chongqing Normal University: Natural Science, 27 (2010), no. 4, 5-8.
[14] V.G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, 1993 (Romania).
[15] D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and new inequalities in analysis. Mathematics and its Applications (East European Series), 61. Kluwer Academic Publishers Group, Dordrecht, 1993.
[16] D. S. Mitrinovic and I. B. Lackovic, Hermite and convexity. Aequationes Math. 28 (1985), no. 3, 229{232.
[17] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions. J. Math. Anal. Appl. 189 (1995), no. 3, 01-908.
[18] N. P. G. Ngoc, N. V. Vinh and P. T. T. Hien, Integral inequalities of Hadamard type for r-convex functions. Int. Math. Forum 4 (2009), no. 33-36, 1723{1728.
[19] M. A. Noor, Variational-like inequalities. Optimization 30 (1994), no. 4, 323-330.
[20] M. A. Noor, Invex equilibrium problems. J. Math. Anal. Appl. 302 (2005), no. 2, 463-475.
[21] M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions. JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 3, Article 75, 6 pp.
[22] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2 (2007), no. 2, 126-131.
23] W. Orlicz, A note on modular spaces. I. Bull. Acad. Polon. Sci. Scr. Sci. Math. Astronom. Phys. 9 (1961) 157{162.
[24] J. Park, On the Hermite-Hadamard-like type inequalities for co-ordinated (s; r)-convex mappings in the rst sense, Inter. J. of Pure and Applied Math.(IJPAM), 74 (2012), , No. 2, 251-263.
[25] C. E. M. Pearce, J. Pecaric and V. Simic, Stolarsky means and Hadamard's inequality. J. Math. Anal. Appl. 220 (1998), no. 1, 99-109.
[26] J. Pecaric, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.
[27] R. Pini, IInvexity and generalized convexity. Optimization 22 (1991), no. 4, 513-525.
[28] F. Qi, Z. -L.Wei and Q. Yang, Generalizations and renements of Hermite-Hadamard's inequality. Rocky Mountain J. Math. 35 (2005), no. 1, 235-251.
[29] A. Saglam, M. Z. Sarikaya and H. Yildirim, Some new inequalities of Hermite-Hadamard's type. Kyungpook Math. J. 50 (2010), no. 3, 399{410.
[30] W. Ul-Haq, , and J. Iqbal, Hermite-Hadamard-type inequalities for $r$-preinvex functions. J. Appl. Math. 2013, Art. ID 126457, 5 pp.
[31] Y. Wang - S. H. Wang - F. Qi, Simpson type integral inequalities in which the power of the absolute value of the rst derivative of the integrand is s-preinvex. Facta Univ. Ser. Math. Inform. 28 (2013), no. 2, 151{159.
[32] S. Wang and X. Liu, New Hermite-Hadamard type inequalities for n-times differentiable and s-logarithmically preinvex functions. Abstr. Appl. Anal. 2014, Art. ID 725987, 11 pp.
[33] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 136 (1988), no. 1, 29{38.
[34] G. Zabandan, A. Bodaghi and A. Kilicman, The Hermite-Hadamard inequality for r-convex functions. J. Inequal. Appl. 2012, 2012:215, 8 pp.
1] A.O. Akdemir and M. Tunc, On some integral inequalities for s-logarithmically convex functions and their applications, arXiv: 1212.1584v1[math.FA] 7 Dec 2012.
[2] T. Antczak, r-preinvexity and r-invexity in mathematical programming. Comput. Math. Appl. 50 (2005), no. 3-4, 551{566.
[3] M. Avriel, r-convex functions. Math. Programming 2 (1972), 309-323.
[4] R. F. Bai, F. Qi, and B. Y. Xi, Hermite-Hadamard type inequalities for the m- and (alpha,m)- logarithmically convex functions. Filomat 27 (2013), no. 1, 1-7.
[5] A. Barani, A.G. Ghazanfari and S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, RGMIA Research Report Collection, 14 (2011), Article 64, 11 pp.
[6] A. Barani, A. G. Ghazanfari and S. S. Dragomir, Hermite-Hadamard inequality through prequasi invex functions, RGMIA Research Report Collection, 14 (2011), Article 48, 7 pp.
[7] A. Ben-Israel and B. Mond, What is invexity? J. Austral. Math. Soc. Ser. B 28 (1986), no. 1, 1-9.
[8] W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20.
[9] S. S. Dragomir, J. E. Pecaric and L. E. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335-341.
[10] S. S. Dragomir and S. Fitzpatrik, The Hadamard's inequality for s-convex functions in the second sense, Demonstration Math. 32 (1999), no. 4, 687{696.
[11] M. A. Hanson, On suciency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), no. 2, 545-550.
[12] M. A. Latif and M. Shoaib, Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (alpha;m)-preinvex functions. J. Egyptian Math. Soc. 23 (2015), no. 2, 236-241.
[13] Li Jue-You, On Hadamard-type inequalities for s-preinvex func-tions. Journal of Chongqing Normal University: Natural Science, 27 (2010), no. 4, 5-8.
[14] V.G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, 1993 (Romania).
[15] D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and new inequalities in analysis. Mathematics and its Applications (East European Series), 61. Kluwer Academic Publishers Group, Dordrecht, 1993.
[16] D. S. Mitrinovic and I. B. Lackovic, Hermite and convexity. Aequationes Math. 28 (1985), no. 3, 229{232.
[17] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions. J. Math. Anal. Appl. 189 (1995), no. 3, 01-908.
[18] N. P. G. Ngoc, N. V. Vinh and P. T. T. Hien, Integral inequalities of Hadamard type for r-convex functions. Int. Math. Forum 4 (2009), no. 33-36, 1723{1728.
[19] M. A. Noor, Variational-like inequalities. Optimization 30 (1994), no. 4, 323-330.
[20] M. A. Noor, Invex equilibrium problems. J. Math. Anal. Appl. 302 (2005), no. 2, 463-475.
[21] M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions. JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 3, Article 75, 6 pp.
[22] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2 (2007), no. 2, 126-131.
23] W. Orlicz, A note on modular spaces. I. Bull. Acad. Polon. Sci. Scr. Sci. Math. Astronom. Phys. 9 (1961) 157{162.
[24] J. Park, On the Hermite-Hadamard-like type inequalities for co-ordinated (s; r)-convex mappings in the rst sense, Inter. J. of Pure and Applied Math.(IJPAM), 74 (2012), , No. 2, 251-263.
[25] C. E. M. Pearce, J. Pecaric and V. Simic, Stolarsky means and Hadamard's inequality. J. Math. Anal. Appl. 220 (1998), no. 1, 99-109.
[26] J. Pecaric, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.
[27] R. Pini, IInvexity and generalized convexity. Optimization 22 (1991), no. 4, 513-525.
[28] F. Qi, Z. -L.Wei and Q. Yang, Generalizations and renements of Hermite-Hadamard's inequality. Rocky Mountain J. Math. 35 (2005), no. 1, 235-251.
[29] A. Saglam, M. Z. Sarikaya and H. Yildirim, Some new inequalities of Hermite-Hadamard's type. Kyungpook Math. J. 50 (2010), no. 3, 399{410.
[30] W. Ul-Haq, , and J. Iqbal, Hermite-Hadamard-type inequalities for $r$-preinvex functions. J. Appl. Math. 2013, Art. ID 126457, 5 pp.
[31] Y. Wang - S. H. Wang - F. Qi, Simpson type integral inequalities in which the power of the absolute value of the rst derivative of the integrand is s-preinvex. Facta Univ. Ser. Math. Inform. 28 (2013), no. 2, 151{159.
[32] S. Wang and X. Liu, New Hermite-Hadamard type inequalities for n-times differentiable and s-logarithmically preinvex functions. Abstr. Appl. Anal. 2014, Art. ID 725987, 11 pp.
[33] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 136 (1988), no. 1, 29{38.
[34] G. Zabandan, A. Bodaghi and A. Kilicman, The Hermite-Hadamard inequality for r-convex functions. J. Inequal. Appl. 2012, 2012:215, 8 pp.
Meftah, B., Boukerrıoua, K., & Chıheb, T. (2017). ON SOME NEW HADAMARD TYPE INEQUALITIES FOR $(s, r)$-PREINVEX FUNCTIONS IN THE SECOND SENSE. Konuralp Journal of Mathematics, 5(1), 24-42.
AMA
Meftah B, Boukerrıoua K, Chıheb T. ON SOME NEW HADAMARD TYPE INEQUALITIES FOR $(s, r)$-PREINVEX FUNCTIONS IN THE SECOND SENSE. Konuralp J. Math. Nisan 2017;5(1):24-42.
Chicago
Meftah, B., K. Boukerrıoua, ve T. Chıheb. “ON SOME NEW HADAMARD TYPE INEQUALITIES FOR $(s, r)$-PREINVEX FUNCTIONS IN THE SECOND SENSE”. Konuralp Journal of Mathematics 5, sy. 1 (Nisan 2017): 24-42.
EndNote
Meftah B, Boukerrıoua K, Chıheb T (01 Nisan 2017) ON SOME NEW HADAMARD TYPE INEQUALITIES FOR $(s, r)$-PREINVEX FUNCTIONS IN THE SECOND SENSE. Konuralp Journal of Mathematics 5 1 24–42.
IEEE
B. Meftah, K. Boukerrıoua, ve T. Chıheb, “ON SOME NEW HADAMARD TYPE INEQUALITIES FOR $(s, r)$-PREINVEX FUNCTIONS IN THE SECOND SENSE”, Konuralp J. Math., c. 5, sy. 1, ss. 24–42, 2017.
ISNAD
Meftah, B. vd. “ON SOME NEW HADAMARD TYPE INEQUALITIES FOR $(s, r)$-PREINVEX FUNCTIONS IN THE SECOND SENSE”. Konuralp Journal of Mathematics 5/1 (Nisan 2017), 24-42.
JAMA
Meftah B, Boukerrıoua K, Chıheb T. ON SOME NEW HADAMARD TYPE INEQUALITIES FOR $(s, r)$-PREINVEX FUNCTIONS IN THE SECOND SENSE. Konuralp J. Math. 2017;5:24–42.
MLA
Meftah, B. vd. “ON SOME NEW HADAMARD TYPE INEQUALITIES FOR $(s, r)$-PREINVEX FUNCTIONS IN THE SECOND SENSE”. Konuralp Journal of Mathematics, c. 5, sy. 1, 2017, ss. 24-42.
Vancouver
Meftah B, Boukerrıoua K, Chıheb T. ON SOME NEW HADAMARD TYPE INEQUALITIES FOR $(s, r)$-PREINVEX FUNCTIONS IN THE SECOND SENSE. Konuralp J. Math. 2017;5(1):24-42.