Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 5 Sayı: 2, 12 - 18, 02.10.2017

Öz

Kaynakça

  • [1] A. Pietsch, Einigie neu Klassen von Kompakten linearen Abbildungen, revue Roum. Math. Pures et Appl., 8, 427-447, 1963.
  • [2] A. Pietsch, s-Numbers of operators in Banach spaces, Studia Mathematica, 51(3), 201-223,1974.
  • [3] B.Carl,A.Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces, Bull.Lond. Math. Soc., 41(2), 332-340, 2009.
  • [4] B.Carl, On s-numbers,quasi s-numbers, s-moduli andWeyl inequalities of operators in Banach spaces, Rev. Mat. Complut., 23, 467-487, 2010.
  • [5] E. Evren Kara, Merve İlkhan, On a new class of s-type operators, Konuralp Journal of Mathematics, 3(1), 1-11, 2015
  • [6] G.Constantin, Operators of Ces-p-type, Rend. Accad.Naz.Lincei Sc. Fis. Mat.Nat., 52, 875-878, 1973
  • [7] I.Gohberg, M.Krein, Introduction to the theory of non-selfadjoint operators, A.M.S. Providence ,1969
  • [8] K.Iseki, A new class of mappings, Stolz mappings,Math.Japon., 3, 275-278, 1974.
  • [9] N.Tita, On Stolz mapping, Math.Japonica, 26(4), 495-496, 1981.
  • [10] N. Tita, Some interpolation properties and tensor product stability of Stolz mappings, International Conf. EITM European Integration Tradition and Modernity,\P. Maior" Univ., Tg. Mures, 666-669, 2007 (CD).
  • [11] N.Tita, On the approximation numbers of the tensor product operator, Analele Stuti ce ale Universitatii "al.I.Cuza" Iasi Tomul, XL,s.l.a., Matematicai, 1994.
  • [12] N.Tita, Some equivalent quasinorms on operator ideals, Spectral and Evolution Problems, Taurida National Univ. Simferopol, 13, 103-108, 2002.
  • [13] N. Tita, Operatori de clasa $\sigma _{p},$, Studii cercet. Mat.23, 467-487, 1971.
  • [14] N.Tita: On a class of $\ell _{\Phi ,\phi }$ operators, Collect. Mat. 32, 275-279, 1981.
  • [15] N. Tita, Ideale de operatori generate de s numere, Ed. Univ. Tranilvania, Brasov, 1998.
  • [16] N.Tita, Cuasinorme echivalente pe spatii de aproximare, Ed. Univ. Tranilvania, Brasov, 2001.
  • [17] N.Tita, A general view on approximation ideals, Functional Analysis and Applications, North Holland Mathematics Studies, 197, 295-300, 2004.
  • [18] Amit Maji, P.D. Srivastava, On operator ideals using weighted Cesaro sequence space, 22(3), 446-452, 2014.
  • [19] N.Salinas, Symmetric norm ideals and relative conjugate ideals,Trans. A.M.S., 188, 213-240, 1974.
  • [20] R. Schatten, Norm ideals of completely continuous operators, Springer Verlag, 1960.
  • [21] Bayram E., Wnuk W., Some Algebra Ideals Of Regular Operators, Commentationes Mathematicae, vol. 53, pp. 227233, 2013.

GENERALIZED STOLZ MAPPINGS

Yıl 2017, Cilt: 5 Sayı: 2, 12 - 18, 02.10.2017

Öz

In this paper, we introduce the class of generalized Stolz mappings. Also we prove that the class of $\ell ^{p}-$-type mappings is included in the class of generalized Stolz mappings and give a new quasinorm equivalent with $\Vert T\Vert_{\phi_{(p)}}$. Finally, we present some properties of the class of generalized Stolz mappings.

Kaynakça

  • [1] A. Pietsch, Einigie neu Klassen von Kompakten linearen Abbildungen, revue Roum. Math. Pures et Appl., 8, 427-447, 1963.
  • [2] A. Pietsch, s-Numbers of operators in Banach spaces, Studia Mathematica, 51(3), 201-223,1974.
  • [3] B.Carl,A.Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces, Bull.Lond. Math. Soc., 41(2), 332-340, 2009.
  • [4] B.Carl, On s-numbers,quasi s-numbers, s-moduli andWeyl inequalities of operators in Banach spaces, Rev. Mat. Complut., 23, 467-487, 2010.
  • [5] E. Evren Kara, Merve İlkhan, On a new class of s-type operators, Konuralp Journal of Mathematics, 3(1), 1-11, 2015
  • [6] G.Constantin, Operators of Ces-p-type, Rend. Accad.Naz.Lincei Sc. Fis. Mat.Nat., 52, 875-878, 1973
  • [7] I.Gohberg, M.Krein, Introduction to the theory of non-selfadjoint operators, A.M.S. Providence ,1969
  • [8] K.Iseki, A new class of mappings, Stolz mappings,Math.Japon., 3, 275-278, 1974.
  • [9] N.Tita, On Stolz mapping, Math.Japonica, 26(4), 495-496, 1981.
  • [10] N. Tita, Some interpolation properties and tensor product stability of Stolz mappings, International Conf. EITM European Integration Tradition and Modernity,\P. Maior" Univ., Tg. Mures, 666-669, 2007 (CD).
  • [11] N.Tita, On the approximation numbers of the tensor product operator, Analele Stuti ce ale Universitatii "al.I.Cuza" Iasi Tomul, XL,s.l.a., Matematicai, 1994.
  • [12] N.Tita, Some equivalent quasinorms on operator ideals, Spectral and Evolution Problems, Taurida National Univ. Simferopol, 13, 103-108, 2002.
  • [13] N. Tita, Operatori de clasa $\sigma _{p},$, Studii cercet. Mat.23, 467-487, 1971.
  • [14] N.Tita: On a class of $\ell _{\Phi ,\phi }$ operators, Collect. Mat. 32, 275-279, 1981.
  • [15] N. Tita, Ideale de operatori generate de s numere, Ed. Univ. Tranilvania, Brasov, 1998.
  • [16] N.Tita, Cuasinorme echivalente pe spatii de aproximare, Ed. Univ. Tranilvania, Brasov, 2001.
  • [17] N.Tita, A general view on approximation ideals, Functional Analysis and Applications, North Holland Mathematics Studies, 197, 295-300, 2004.
  • [18] Amit Maji, P.D. Srivastava, On operator ideals using weighted Cesaro sequence space, 22(3), 446-452, 2014.
  • [19] N.Salinas, Symmetric norm ideals and relative conjugate ideals,Trans. A.M.S., 188, 213-240, 1974.
  • [20] R. Schatten, Norm ideals of completely continuous operators, Springer Verlag, 1960.
  • [21] Bayram E., Wnuk W., Some Algebra Ideals Of Regular Operators, Commentationes Mathematicae, vol. 53, pp. 227233, 2013.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Articles
Yazarlar

Pinar Zengin Alp

Merve İlkhan

Emrah Evren Kara

Yayımlanma Tarihi 2 Ekim 2017
Gönderilme Tarihi 7 Eylül 2017
Kabul Tarihi 22 Eylül 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 2

Kaynak Göster

APA Zengin Alp, P., İlkhan, M., & Kara, E. E. (2017). GENERALIZED STOLZ MAPPINGS. Konuralp Journal of Mathematics, 5(2), 12-18.
AMA Zengin Alp P, İlkhan M, Kara EE. GENERALIZED STOLZ MAPPINGS. Konuralp J. Math. Ekim 2017;5(2):12-18.
Chicago Zengin Alp, Pinar, Merve İlkhan, ve Emrah Evren Kara. “GENERALIZED STOLZ MAPPINGS”. Konuralp Journal of Mathematics 5, sy. 2 (Ekim 2017): 12-18.
EndNote Zengin Alp P, İlkhan M, Kara EE (01 Ekim 2017) GENERALIZED STOLZ MAPPINGS. Konuralp Journal of Mathematics 5 2 12–18.
IEEE P. Zengin Alp, M. İlkhan, ve E. E. Kara, “GENERALIZED STOLZ MAPPINGS”, Konuralp J. Math., c. 5, sy. 2, ss. 12–18, 2017.
ISNAD Zengin Alp, Pinar vd. “GENERALIZED STOLZ MAPPINGS”. Konuralp Journal of Mathematics 5/2 (Ekim 2017), 12-18.
JAMA Zengin Alp P, İlkhan M, Kara EE. GENERALIZED STOLZ MAPPINGS. Konuralp J. Math. 2017;5:12–18.
MLA Zengin Alp, Pinar vd. “GENERALIZED STOLZ MAPPINGS”. Konuralp Journal of Mathematics, c. 5, sy. 2, 2017, ss. 12-18.
Vancouver Zengin Alp P, İlkhan M, Kara EE. GENERALIZED STOLZ MAPPINGS. Konuralp J. Math. 2017;5(2):12-8.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.