Research Article
BibTex RIS Cite

ON $\alpha $-KENMOTSU MANIFOLDS SATISFYING SEMI-SYMMETRIC CONDITIONS

Year 2017, Volume: 5 Issue: 2, 192 - 206, 15.10.2017

Abstract

The main purpose of this paper is to study $\alpha $-Kenmotsu manifolds satisfying some semi-symmetric conditions where $\alpha $ is a smooth function defined by $d\alpha \wedge \eta =0$ on $M^{2n+1}.$ In particularly, projectively, conformally and concircularly semi-symmetric tensor fields are considered. The results related to the effects of semi-symmetric conditions are given. Finally, illustrating examples on $\alpha $-Kenmotsu manifolds depending on $\alpha $ are constructed.

References

  • [1] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Birkhauser, Boston, 2002.
  • [2] J. B. Jun, U. C. De and G. Pathak, On Kenmotsu Manifolds, J. Korean Math. Soc., 42 (3)(2005), 435-445.
  • [3] K. Kenmotsu, A Class of Contact Riemannian Manifold, Toh^oku Math. J., 24(1972), 93-103.
  • [4] T. W. Kim, H. K. Pak, Canonical Foliations of Certain Classes of Amost Contact Metric Structures, Acta Math. Sinica, 21(4)(2005), 841-846.
  • [5] K. Yano, M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3. World Scienti c Publishing, Singapore, 1984.
  • [6] Z. Olszak, On Amost Cosymplectic Manifolds, Kodai Math, 4 (2)(1981), 239-250.
  • [7] H. Öztürk, N. Aktan and C. Murathan, On $\alpha$-Kenmotsu Manifolds Satisfying Certain Conditions, Applied Sciences, 12(2010), 115-126.
  • [8] S. Tanno, The Automorphism Groups of Almost Contact Riemannian Manifolds, Tohoku Math. J., 21(1969), 21-38.
  • [9] K. Nomizu, On Hypersurfaces Satisfying a Certain Condition on the Curvature Tensor, Tohoku Mat. J., 20(1968), 46-69.
  • [10] Z. I. Szabo, Structure Theorem on Riemannian Spaces Satisfying R:R = 0, Journal of Differential Geo., 17(1982), 531-582.
  • [11] Y. Ogawa, A Condition for a Compact Kaehlerian Space to be Locally Symmetric, Nat. Sci. Rep. Ochanomizu Univ., 28(1977), 21-23.
  • [12] S. Tanno, Isometric Immersion of Sasakian Manifolds in Spheres, Kodai Math. Sem. Rep., 21(1969), 448-458.
  • [13] H. Öztürk, N. Aktan, C. Murathan and A. T. Vanl, Almost $\alpha$-Cosymplectic $f$-Manifolds, The Journal of Alexandru Ioan Cuza University, 60 (1)(2014), 211-226.
  • [14] N. Aktan, M. Yıldırım and C. Murathan, Almost $f$-Cosymplectic Manifolds, Mediterranean J. Math., 11(2014), 775-787.
  • [15] C. S. Bagewadi, Venkatesha, Some Curvature Tensors on a Trans-Sasakian Manifold, Turkish J. Math., 31(2007), 111-121.
  • [16] G. Calvaruso, D. Perrone, Semi-Symmetric Contact Metric Three-Manifolds, Yokohama Math. J., 49(2002), 149-161.
  • [17] P. Dacko, Z. Olszak, On Conformally Flat Almost Cosymplectic Manifolds with Kaehlerian Leaves, Rend. Sem. Math. Univ. Pol. Torino, 56(1998), 89-103.
  • [18] I. Vaisman, Conformal Changes of Almost Contact Metric Manifolds, Lecture Notes in Math., Berlin-Heidelberg-New York, 792(1980), 435-443.
Year 2017, Volume: 5 Issue: 2, 192 - 206, 15.10.2017

Abstract

References

  • [1] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Birkhauser, Boston, 2002.
  • [2] J. B. Jun, U. C. De and G. Pathak, On Kenmotsu Manifolds, J. Korean Math. Soc., 42 (3)(2005), 435-445.
  • [3] K. Kenmotsu, A Class of Contact Riemannian Manifold, Toh^oku Math. J., 24(1972), 93-103.
  • [4] T. W. Kim, H. K. Pak, Canonical Foliations of Certain Classes of Amost Contact Metric Structures, Acta Math. Sinica, 21(4)(2005), 841-846.
  • [5] K. Yano, M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3. World Scienti c Publishing, Singapore, 1984.
  • [6] Z. Olszak, On Amost Cosymplectic Manifolds, Kodai Math, 4 (2)(1981), 239-250.
  • [7] H. Öztürk, N. Aktan and C. Murathan, On $\alpha$-Kenmotsu Manifolds Satisfying Certain Conditions, Applied Sciences, 12(2010), 115-126.
  • [8] S. Tanno, The Automorphism Groups of Almost Contact Riemannian Manifolds, Tohoku Math. J., 21(1969), 21-38.
  • [9] K. Nomizu, On Hypersurfaces Satisfying a Certain Condition on the Curvature Tensor, Tohoku Mat. J., 20(1968), 46-69.
  • [10] Z. I. Szabo, Structure Theorem on Riemannian Spaces Satisfying R:R = 0, Journal of Differential Geo., 17(1982), 531-582.
  • [11] Y. Ogawa, A Condition for a Compact Kaehlerian Space to be Locally Symmetric, Nat. Sci. Rep. Ochanomizu Univ., 28(1977), 21-23.
  • [12] S. Tanno, Isometric Immersion of Sasakian Manifolds in Spheres, Kodai Math. Sem. Rep., 21(1969), 448-458.
  • [13] H. Öztürk, N. Aktan, C. Murathan and A. T. Vanl, Almost $\alpha$-Cosymplectic $f$-Manifolds, The Journal of Alexandru Ioan Cuza University, 60 (1)(2014), 211-226.
  • [14] N. Aktan, M. Yıldırım and C. Murathan, Almost $f$-Cosymplectic Manifolds, Mediterranean J. Math., 11(2014), 775-787.
  • [15] C. S. Bagewadi, Venkatesha, Some Curvature Tensors on a Trans-Sasakian Manifold, Turkish J. Math., 31(2007), 111-121.
  • [16] G. Calvaruso, D. Perrone, Semi-Symmetric Contact Metric Three-Manifolds, Yokohama Math. J., 49(2002), 149-161.
  • [17] P. Dacko, Z. Olszak, On Conformally Flat Almost Cosymplectic Manifolds with Kaehlerian Leaves, Rend. Sem. Math. Univ. Pol. Torino, 56(1998), 89-103.
  • [18] I. Vaisman, Conformal Changes of Almost Contact Metric Manifolds, Lecture Notes in Math., Berlin-Heidelberg-New York, 792(1980), 435-443.
There are 18 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Hakan Öztürk

Publication Date October 15, 2017
Submission Date October 15, 2017
Acceptance Date April 25, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Öztürk, H. (2017). ON $\alpha $-KENMOTSU MANIFOLDS SATISFYING SEMI-SYMMETRIC CONDITIONS. Konuralp Journal of Mathematics, 5(2), 192-206.
AMA Öztürk H. ON $\alpha $-KENMOTSU MANIFOLDS SATISFYING SEMI-SYMMETRIC CONDITIONS. Konuralp J. Math. October 2017;5(2):192-206.
Chicago Öztürk, Hakan. “ON $\alpha $-KENMOTSU MANIFOLDS SATISFYING SEMI-SYMMETRIC CONDITIONS”. Konuralp Journal of Mathematics 5, no. 2 (October 2017): 192-206.
EndNote Öztürk H (October 1, 2017) ON $\alpha $-KENMOTSU MANIFOLDS SATISFYING SEMI-SYMMETRIC CONDITIONS. Konuralp Journal of Mathematics 5 2 192–206.
IEEE H. Öztürk, “ON $\alpha $-KENMOTSU MANIFOLDS SATISFYING SEMI-SYMMETRIC CONDITIONS”, Konuralp J. Math., vol. 5, no. 2, pp. 192–206, 2017.
ISNAD Öztürk, Hakan. “ON $\alpha $-KENMOTSU MANIFOLDS SATISFYING SEMI-SYMMETRIC CONDITIONS”. Konuralp Journal of Mathematics 5/2 (October 2017), 192-206.
JAMA Öztürk H. ON $\alpha $-KENMOTSU MANIFOLDS SATISFYING SEMI-SYMMETRIC CONDITIONS. Konuralp J. Math. 2017;5:192–206.
MLA Öztürk, Hakan. “ON $\alpha $-KENMOTSU MANIFOLDS SATISFYING SEMI-SYMMETRIC CONDITIONS”. Konuralp Journal of Mathematics, vol. 5, no. 2, 2017, pp. 192-06.
Vancouver Öztürk H. ON $\alpha $-KENMOTSU MANIFOLDS SATISFYING SEMI-SYMMETRIC CONDITIONS. Konuralp J. Math. 2017;5(2):192-206.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.