Research Article
BibTex RIS Cite

Common Fixed Point Theorems For F-Contractions In $G$-Metric Spaces Using Compatible Mappings

Year 2018, Volume: 6 Issue: 1, 92 - 97, 15.04.2018

Abstract

Using a mapping $F:\mathbb{R_{+}}\rightarrow \mathbb{R}$, Wardowski [1] introduce a new type of contraction called $F$-contraction and prove a new fixed point theorem concerning $F$-contraction. In the present article, we prove some fixed point theorems with helping compatible maps for type $1$ and type $2$ $F$-contraction in complete $G$-metric spaces.

References

  • [1] D. Wardowski, Fixed Point of a new type of contactive mappings in complete metric spaces, Fixed Point Theory and Applications, 94, 6 pp., (2012), DOI:10.1186/1687-1812-2012-94.
  • [2] S. Banach, Surles operations dansles ensembles abstracits et leur application aux equations integrales, Fund Math., 3, (1922), 133-181.
  • [3] Z. Mustafa and B. Sims, A new approach to a generalized metric spaces, J. Nonlinear Convex Anal., 7, (2), (2006), 289-297.
  • [4] M. Abbas, A. R. Khan and T. Nazir, Coupled common fixed point results in two generalized metric spaces, Applied Mathematics and Computation, Vol:217 No.13 pp. (2011), 6328-6336.
  • [5] M. Abbas, T. Nazir and D. Doric, Common fixed point of mappings satisfying (E.A) property in generalized metric spaces, Applied Mathematics and Computation, Vol:218, No.14 pp., (2012), 7665-7670.
  • [6] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. and Math. Sci., page 10, (2009), DOI:10.1155/2009/283028.
  • [7] H.S. Ding and E. Karapınar, A note on some coupled fixed point theorems on G-metric space, Journal of Inequalities and Applications, Vol:2012, article 170, (2012), DOI: 10.1186/1029-242X-2012-170.
  • [8] G. Jungck, Commuting mappings and fixed point, Amer. Math. Monthly, Vol:83, No.4 (1976), 261-263.
  • [9] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9, (1986), 771-779.
  • [10] M. Kumar, Compatible Maps in G-Metric spaces, Int. Journal of Math. Anaysis, Vol:6, No.29 (2012), 1415-1421.
  • [11] M. Cosentino, and P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat Vol:28, No.4 pp., (2014), 715-722.
  • [12] J. Ahmad, A. Rawashdeh and A. Azam, New fixed point theorems for generalized F-contractions in complete metric space, Fixed Point Theory and Applications, 80, (2015), DOI: 10.1186/s13663-015-0333-2.
  • [13] R. Batra and S. Vashistha, Fixed points of an F-contraction on metric spaces with a graph, Int. J. Comput. Math., Vol:91, (12), (2014), 2483-2490.
  • [14] S. Chong, J. K. Kim, L. Wong, and J. Tang, Existence of fixed points for generalized F-contractions and generalized F-suzuki contractions in metric spaces, Global Journal of pure and applied Mathematics, ISSN 0973-1768, Vol:12, No.6 (2016), pp. 4867-4882.
  • [15] G. Mınak, A. Helvacı, and I. Altun, C´ iric´ type generalized F-contractions on complete metric spaces and fixed point results, Filomat, 28, (6), (2014), 1143-1151.
  • [16] H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., 210, (2014), DOI:10.1186/1687-1812-2014,210.
  • [17] D. Wardowski and N. Van Dung, Fixed points of F -weak contractions on complete metric spaces, Demonstr. Math., Vol:XLVII No.1, (2014), 146-155.
  • [18] R. Batra, S. Vashistha and R. Kumar, A coincidence point theorem for F-contractions on metric spaces equipped with an altered distance, J. Math.Comput. Sci., 4, (5), (2014), 826-833.
Year 2018, Volume: 6 Issue: 1, 92 - 97, 15.04.2018

Abstract

References

  • [1] D. Wardowski, Fixed Point of a new type of contactive mappings in complete metric spaces, Fixed Point Theory and Applications, 94, 6 pp., (2012), DOI:10.1186/1687-1812-2012-94.
  • [2] S. Banach, Surles operations dansles ensembles abstracits et leur application aux equations integrales, Fund Math., 3, (1922), 133-181.
  • [3] Z. Mustafa and B. Sims, A new approach to a generalized metric spaces, J. Nonlinear Convex Anal., 7, (2), (2006), 289-297.
  • [4] M. Abbas, A. R. Khan and T. Nazir, Coupled common fixed point results in two generalized metric spaces, Applied Mathematics and Computation, Vol:217 No.13 pp. (2011), 6328-6336.
  • [5] M. Abbas, T. Nazir and D. Doric, Common fixed point of mappings satisfying (E.A) property in generalized metric spaces, Applied Mathematics and Computation, Vol:218, No.14 pp., (2012), 7665-7670.
  • [6] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. and Math. Sci., page 10, (2009), DOI:10.1155/2009/283028.
  • [7] H.S. Ding and E. Karapınar, A note on some coupled fixed point theorems on G-metric space, Journal of Inequalities and Applications, Vol:2012, article 170, (2012), DOI: 10.1186/1029-242X-2012-170.
  • [8] G. Jungck, Commuting mappings and fixed point, Amer. Math. Monthly, Vol:83, No.4 (1976), 261-263.
  • [9] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9, (1986), 771-779.
  • [10] M. Kumar, Compatible Maps in G-Metric spaces, Int. Journal of Math. Anaysis, Vol:6, No.29 (2012), 1415-1421.
  • [11] M. Cosentino, and P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat Vol:28, No.4 pp., (2014), 715-722.
  • [12] J. Ahmad, A. Rawashdeh and A. Azam, New fixed point theorems for generalized F-contractions in complete metric space, Fixed Point Theory and Applications, 80, (2015), DOI: 10.1186/s13663-015-0333-2.
  • [13] R. Batra and S. Vashistha, Fixed points of an F-contraction on metric spaces with a graph, Int. J. Comput. Math., Vol:91, (12), (2014), 2483-2490.
  • [14] S. Chong, J. K. Kim, L. Wong, and J. Tang, Existence of fixed points for generalized F-contractions and generalized F-suzuki contractions in metric spaces, Global Journal of pure and applied Mathematics, ISSN 0973-1768, Vol:12, No.6 (2016), pp. 4867-4882.
  • [15] G. Mınak, A. Helvacı, and I. Altun, C´ iric´ type generalized F-contractions on complete metric spaces and fixed point results, Filomat, 28, (6), (2014), 1143-1151.
  • [16] H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., 210, (2014), DOI:10.1186/1687-1812-2014,210.
  • [17] D. Wardowski and N. Van Dung, Fixed points of F -weak contractions on complete metric spaces, Demonstr. Math., Vol:XLVII No.1, (2014), 146-155.
  • [18] R. Batra, S. Vashistha and R. Kumar, A coincidence point theorem for F-contractions on metric spaces equipped with an altered distance, J. Math.Comput. Sci., 4, (5), (2014), 826-833.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Cafer Aydın

Seher Sultan Sepet This is me

Publication Date April 15, 2018
Submission Date September 22, 2017
Acceptance Date December 28, 2017
Published in Issue Year 2018 Volume: 6 Issue: 1

Cite

APA Aydın, C., & Sepet, S. S. (2018). Common Fixed Point Theorems For F-Contractions In $G$-Metric Spaces Using Compatible Mappings. Konuralp Journal of Mathematics, 6(1), 92-97.
AMA Aydın C, Sepet SS. Common Fixed Point Theorems For F-Contractions In $G$-Metric Spaces Using Compatible Mappings. Konuralp J. Math. April 2018;6(1):92-97.
Chicago Aydın, Cafer, and Seher Sultan Sepet. “Common Fixed Point Theorems For F-Contractions In $G$-Metric Spaces Using Compatible Mappings”. Konuralp Journal of Mathematics 6, no. 1 (April 2018): 92-97.
EndNote Aydın C, Sepet SS (April 1, 2018) Common Fixed Point Theorems For F-Contractions In $G$-Metric Spaces Using Compatible Mappings. Konuralp Journal of Mathematics 6 1 92–97.
IEEE C. Aydın and S. S. Sepet, “Common Fixed Point Theorems For F-Contractions In $G$-Metric Spaces Using Compatible Mappings”, Konuralp J. Math., vol. 6, no. 1, pp. 92–97, 2018.
ISNAD Aydın, Cafer - Sepet, Seher Sultan. “Common Fixed Point Theorems For F-Contractions In $G$-Metric Spaces Using Compatible Mappings”. Konuralp Journal of Mathematics 6/1 (April 2018), 92-97.
JAMA Aydın C, Sepet SS. Common Fixed Point Theorems For F-Contractions In $G$-Metric Spaces Using Compatible Mappings. Konuralp J. Math. 2018;6:92–97.
MLA Aydın, Cafer and Seher Sultan Sepet. “Common Fixed Point Theorems For F-Contractions In $G$-Metric Spaces Using Compatible Mappings”. Konuralp Journal of Mathematics, vol. 6, no. 1, 2018, pp. 92-97.
Vancouver Aydın C, Sepet SS. Common Fixed Point Theorems For F-Contractions In $G$-Metric Spaces Using Compatible Mappings. Konuralp J. Math. 2018;6(1):92-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.