Research Article
BibTex RIS Cite

$\mathcal{I}$-Convergence and $\mathcal{I}$-Cauchy Sequence of Functions In 2-Normed Spaces

Year 2018, Volume: 6 Issue: 1, 57 - 62, 15.04.2018

Abstract

In this paper, we study concepts of $\mathcal{I}$-convergence, $\mathcal{I}^*$-convergence, $\mathcal{I}$-Cauchy and $\mathcal{I}^*$-Cauchy sequences of functions and investigate relationships between them and some properties in $2$-normed spaces.

References

  • [1] V. Balaz, J. C ervenansky, P. Kostyrko, T. Salat, I-convergence and I-continuity of real functions, Acta Mathematica, Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, 5 (2004), 43–50.
  • [2] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (2007), 715-729.
  • [3] H. C¸ akallı and S. Ersan, New types of continuity in 2-normed spaces, Filomat, 30(3) (2016), 525–532.
  • [4] O. Duman, C. Orhan, m-statistically convergent function sequences, Czechoslovak Mathematical Journal, 54(129) (2004), 413–422.
  • [5] E. Dündar, B. Altay, I2-convergence of double sequences of functions, Electronic Journal of Mathematical Analysis and Applications, 3(1) (2015), 111–121.
  • [6] E. Dündar, B. Altay, I2-uniform convergence of double sequences of functions, Filomat, 30(5) (2016), 1273–1281.
  • [7] E. Dündar, On some results of I2-convergence of double sequences of functions, Mathematical Analysis Sciences and Applications E-notes, 3(1) (2015), 44–52.
  • [8] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
  • [9] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
  • [10] S. G¨ahler, 2-metrische R¨aume und ihre topologische struktur, Math. Nachr., 26 (1963), 115–148.
  • [11] S. G¨ahler, 2-normed spaces, Math. Nachr., 28 (1964), 1–43.
  • [12] F. Gezer, S. Karakus¸, I and I convergent function sequences, Math. Commun., 10 (2005), 71-80.
  • [13] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum, 2(8) (2007), 365-374.
  • [14] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (10) (2001), 631–639.
  • [15] H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math., 27(3) (2001), 321–329.
  • [16] M. Gürdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math., 2(1) (2004), 107–113.
  • [17] M. Gürdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bulletin of Mathematics, 33 (2009), 257–264. [18] M. Gürdal, I. Açık, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl., 11(2) (2008), 349–354.
  • [19] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math., 4(1) (2006), 85–91.
  • [20] P. Kostyrko, T. ˘ Sal´at, W. Wilczy´nski, I-convergence, Real Anal. Exchange, 26(2) (2000), 669–686.
  • [21] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62 (2012), 49-62.
  • [22] M. Mursaleen, A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca, 61 (6) (2011), 933–940.
  • [23] A. Nabiev, S. Pehlivan and M. G¨urdal, On I-Cauchy sequences, Taiwanese J. Math. 11(2) (2007), 569–576.
  • [24] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 245 (2000), 513–527.
  • [25] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Internat. J. Math. Math. Sci., 2011 (2011), 10 pages.
  • [26] E. Savas¸, M. G¨urdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557–567.
  • [27] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
  • [28] A. Sharma, K. Kumar, Statistical convergence in probabilistic 2-normed spaces, Mathematical Sciences, 2(4) (2008), 373–390.
  • [29] A. S¸ ahiner, M. G¨urdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11 (2007), 1477–1484.
  • [30] B.C. Tripathy, M. Sen, S. Nath, I-convergence in probabilistic n-normed space, Soft Comput., 16 (2012), 1021–1027.
  • [31] S. Yegül, E. Dündar, On Statistical Convergence of Sequences of Functions In 2-Normed Spaces, Journal of Classical Analysis, 10(1) (2017), 49–57.
Year 2018, Volume: 6 Issue: 1, 57 - 62, 15.04.2018

Abstract

References

  • [1] V. Balaz, J. C ervenansky, P. Kostyrko, T. Salat, I-convergence and I-continuity of real functions, Acta Mathematica, Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, 5 (2004), 43–50.
  • [2] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (2007), 715-729.
  • [3] H. C¸ akallı and S. Ersan, New types of continuity in 2-normed spaces, Filomat, 30(3) (2016), 525–532.
  • [4] O. Duman, C. Orhan, m-statistically convergent function sequences, Czechoslovak Mathematical Journal, 54(129) (2004), 413–422.
  • [5] E. Dündar, B. Altay, I2-convergence of double sequences of functions, Electronic Journal of Mathematical Analysis and Applications, 3(1) (2015), 111–121.
  • [6] E. Dündar, B. Altay, I2-uniform convergence of double sequences of functions, Filomat, 30(5) (2016), 1273–1281.
  • [7] E. Dündar, On some results of I2-convergence of double sequences of functions, Mathematical Analysis Sciences and Applications E-notes, 3(1) (2015), 44–52.
  • [8] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
  • [9] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
  • [10] S. G¨ahler, 2-metrische R¨aume und ihre topologische struktur, Math. Nachr., 26 (1963), 115–148.
  • [11] S. G¨ahler, 2-normed spaces, Math. Nachr., 28 (1964), 1–43.
  • [12] F. Gezer, S. Karakus¸, I and I convergent function sequences, Math. Commun., 10 (2005), 71-80.
  • [13] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum, 2(8) (2007), 365-374.
  • [14] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (10) (2001), 631–639.
  • [15] H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math., 27(3) (2001), 321–329.
  • [16] M. Gürdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math., 2(1) (2004), 107–113.
  • [17] M. Gürdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bulletin of Mathematics, 33 (2009), 257–264. [18] M. Gürdal, I. Açık, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl., 11(2) (2008), 349–354.
  • [19] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math., 4(1) (2006), 85–91.
  • [20] P. Kostyrko, T. ˘ Sal´at, W. Wilczy´nski, I-convergence, Real Anal. Exchange, 26(2) (2000), 669–686.
  • [21] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62 (2012), 49-62.
  • [22] M. Mursaleen, A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca, 61 (6) (2011), 933–940.
  • [23] A. Nabiev, S. Pehlivan and M. G¨urdal, On I-Cauchy sequences, Taiwanese J. Math. 11(2) (2007), 569–576.
  • [24] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 245 (2000), 513–527.
  • [25] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Internat. J. Math. Math. Sci., 2011 (2011), 10 pages.
  • [26] E. Savas¸, M. G¨urdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557–567.
  • [27] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
  • [28] A. Sharma, K. Kumar, Statistical convergence in probabilistic 2-normed spaces, Mathematical Sciences, 2(4) (2008), 373–390.
  • [29] A. S¸ ahiner, M. G¨urdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11 (2007), 1477–1484.
  • [30] B.C. Tripathy, M. Sen, S. Nath, I-convergence in probabilistic n-normed space, Soft Comput., 16 (2012), 1021–1027.
  • [31] S. Yegül, E. Dündar, On Statistical Convergence of Sequences of Functions In 2-Normed Spaces, Journal of Classical Analysis, 10(1) (2017), 49–57.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mukaddes Arslan

Erdinç Dündar This is me

Publication Date April 15, 2018
Submission Date August 15, 2017
Published in Issue Year 2018 Volume: 6 Issue: 1

Cite

APA Arslan, M., & Dündar, E. (2018). $\mathcal{I}$-Convergence and $\mathcal{I}$-Cauchy Sequence of Functions In 2-Normed Spaces. Konuralp Journal of Mathematics, 6(1), 57-62.
AMA Arslan M, Dündar E. $\mathcal{I}$-Convergence and $\mathcal{I}$-Cauchy Sequence of Functions In 2-Normed Spaces. Konuralp J. Math. April 2018;6(1):57-62.
Chicago Arslan, Mukaddes, and Erdinç Dündar. “$\mathcal{I}$-Convergence and $\mathcal{I}$-Cauchy Sequence of Functions In 2-Normed Spaces”. Konuralp Journal of Mathematics 6, no. 1 (April 2018): 57-62.
EndNote Arslan M, Dündar E (April 1, 2018) $\mathcal{I}$-Convergence and $\mathcal{I}$-Cauchy Sequence of Functions In 2-Normed Spaces. Konuralp Journal of Mathematics 6 1 57–62.
IEEE M. Arslan and E. Dündar, “$\mathcal{I}$-Convergence and $\mathcal{I}$-Cauchy Sequence of Functions In 2-Normed Spaces”, Konuralp J. Math., vol. 6, no. 1, pp. 57–62, 2018.
ISNAD Arslan, Mukaddes - Dündar, Erdinç. “$\mathcal{I}$-Convergence and $\mathcal{I}$-Cauchy Sequence of Functions In 2-Normed Spaces”. Konuralp Journal of Mathematics 6/1 (April 2018), 57-62.
JAMA Arslan M, Dündar E. $\mathcal{I}$-Convergence and $\mathcal{I}$-Cauchy Sequence of Functions In 2-Normed Spaces. Konuralp J. Math. 2018;6:57–62.
MLA Arslan, Mukaddes and Erdinç Dündar. “$\mathcal{I}$-Convergence and $\mathcal{I}$-Cauchy Sequence of Functions In 2-Normed Spaces”. Konuralp Journal of Mathematics, vol. 6, no. 1, 2018, pp. 57-62.
Vancouver Arslan M, Dündar E. $\mathcal{I}$-Convergence and $\mathcal{I}$-Cauchy Sequence of Functions In 2-Normed Spaces. Konuralp J. Math. 2018;6(1):57-62.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.