$\mathcal{I}$-Convergence and $\mathcal{I}$-Cauchy Sequence of Functions In 2-Normed Spaces
Year 2018,
Volume: 6 Issue: 1, 57 - 62, 15.04.2018
Mukaddes Arslan
,
Erdinç Dündar
Abstract
In this paper, we study concepts of $\mathcal{I}$-convergence, $\mathcal{I}^*$-convergence, $\mathcal{I}$-Cauchy and $\mathcal{I}^*$-Cauchy sequences of functions and investigate relationships between them and some properties in $2$-normed spaces.
References
- [1] V. Balaz, J. C ervenansky, P. Kostyrko, T. Salat, I-convergence and I-continuity of real functions, Acta Mathematica, Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, 5 (2004), 43–50.
- [2] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (2007), 715-729.
- [3] H. C¸ akallı and S. Ersan, New types of continuity in 2-normed spaces, Filomat, 30(3) (2016), 525–532.
- [4] O. Duman, C. Orhan, m-statistically convergent function sequences, Czechoslovak Mathematical Journal, 54(129) (2004), 413–422.
- [5] E. Dündar, B. Altay, I2-convergence of double sequences of functions, Electronic Journal of Mathematical Analysis and Applications, 3(1) (2015), 111–121.
- [6] E. Dündar, B. Altay, I2-uniform convergence of double sequences of functions, Filomat, 30(5) (2016), 1273–1281.
- [7] E. Dündar, On some results of I2-convergence of double sequences of functions, Mathematical Analysis Sciences and Applications E-notes, 3(1) (2015), 44–52.
- [8] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
- [9] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
- [10] S. G¨ahler, 2-metrische R¨aume und ihre topologische struktur, Math. Nachr., 26 (1963), 115–148.
- [11] S. G¨ahler, 2-normed spaces, Math. Nachr., 28 (1964), 1–43.
- [12] F. Gezer, S. Karakus¸, I and I convergent function sequences, Math. Commun., 10 (2005), 71-80.
- [13] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum, 2(8) (2007), 365-374.
- [14] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (10) (2001), 631–639.
- [15] H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math., 27(3) (2001), 321–329.
- [16] M. Gürdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math., 2(1) (2004), 107–113.
- [17] M. Gürdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bulletin of Mathematics, 33 (2009), 257–264.
[18] M. Gürdal, I. Açık, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl., 11(2) (2008), 349–354.
- [19] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math., 4(1) (2006), 85–91.
- [20] P. Kostyrko, T. ˘ Sal´at, W. Wilczy´nski, I-convergence, Real Anal. Exchange, 26(2) (2000), 669–686.
- [21] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62 (2012), 49-62.
- [22] M. Mursaleen, A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca, 61 (6) (2011), 933–940.
- [23] A. Nabiev, S. Pehlivan and M. G¨urdal, On I-Cauchy sequences, Taiwanese J. Math. 11(2) (2007), 569–576.
- [24] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 245 (2000), 513–527.
- [25] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Internat. J. Math. Math. Sci., 2011 (2011), 10 pages.
- [26] E. Savas¸, M. G¨urdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557–567.
- [27] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
- [28] A. Sharma, K. Kumar, Statistical convergence in probabilistic 2-normed spaces, Mathematical Sciences, 2(4) (2008), 373–390.
- [29] A. S¸ ahiner, M. G¨urdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11 (2007), 1477–1484.
- [30] B.C. Tripathy, M. Sen, S. Nath, I-convergence in probabilistic n-normed space, Soft Comput., 16 (2012), 1021–1027.
- [31] S. Yegül, E. Dündar, On Statistical Convergence of Sequences of Functions In 2-Normed Spaces, Journal of Classical Analysis, 10(1) (2017), 49–57.
Year 2018,
Volume: 6 Issue: 1, 57 - 62, 15.04.2018
Mukaddes Arslan
,
Erdinç Dündar
References
- [1] V. Balaz, J. C ervenansky, P. Kostyrko, T. Salat, I-convergence and I-continuity of real functions, Acta Mathematica, Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, 5 (2004), 43–50.
- [2] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (2007), 715-729.
- [3] H. C¸ akallı and S. Ersan, New types of continuity in 2-normed spaces, Filomat, 30(3) (2016), 525–532.
- [4] O. Duman, C. Orhan, m-statistically convergent function sequences, Czechoslovak Mathematical Journal, 54(129) (2004), 413–422.
- [5] E. Dündar, B. Altay, I2-convergence of double sequences of functions, Electronic Journal of Mathematical Analysis and Applications, 3(1) (2015), 111–121.
- [6] E. Dündar, B. Altay, I2-uniform convergence of double sequences of functions, Filomat, 30(5) (2016), 1273–1281.
- [7] E. Dündar, On some results of I2-convergence of double sequences of functions, Mathematical Analysis Sciences and Applications E-notes, 3(1) (2015), 44–52.
- [8] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
- [9] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
- [10] S. G¨ahler, 2-metrische R¨aume und ihre topologische struktur, Math. Nachr., 26 (1963), 115–148.
- [11] S. G¨ahler, 2-normed spaces, Math. Nachr., 28 (1964), 1–43.
- [12] F. Gezer, S. Karakus¸, I and I convergent function sequences, Math. Commun., 10 (2005), 71-80.
- [13] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum, 2(8) (2007), 365-374.
- [14] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (10) (2001), 631–639.
- [15] H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math., 27(3) (2001), 321–329.
- [16] M. Gürdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math., 2(1) (2004), 107–113.
- [17] M. Gürdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bulletin of Mathematics, 33 (2009), 257–264.
[18] M. Gürdal, I. Açık, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl., 11(2) (2008), 349–354.
- [19] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math., 4(1) (2006), 85–91.
- [20] P. Kostyrko, T. ˘ Sal´at, W. Wilczy´nski, I-convergence, Real Anal. Exchange, 26(2) (2000), 669–686.
- [21] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62 (2012), 49-62.
- [22] M. Mursaleen, A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca, 61 (6) (2011), 933–940.
- [23] A. Nabiev, S. Pehlivan and M. G¨urdal, On I-Cauchy sequences, Taiwanese J. Math. 11(2) (2007), 569–576.
- [24] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 245 (2000), 513–527.
- [25] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Internat. J. Math. Math. Sci., 2011 (2011), 10 pages.
- [26] E. Savas¸, M. G¨urdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557–567.
- [27] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
- [28] A. Sharma, K. Kumar, Statistical convergence in probabilistic 2-normed spaces, Mathematical Sciences, 2(4) (2008), 373–390.
- [29] A. S¸ ahiner, M. G¨urdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11 (2007), 1477–1484.
- [30] B.C. Tripathy, M. Sen, S. Nath, I-convergence in probabilistic n-normed space, Soft Comput., 16 (2012), 1021–1027.
- [31] S. Yegül, E. Dündar, On Statistical Convergence of Sequences of Functions In 2-Normed Spaces, Journal of Classical Analysis, 10(1) (2017), 49–57.