Araştırma Makalesi
BibTex RIS Kaynak Göster

$D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds

Yıl 2019, Cilt: 7 Sayı: 1, 122 - 127, 15.04.2019

Öz

In this paper, we study $(k,\mu)$-contact metric manifold under $D_a$-homothetic deformation. It is proved that a $D_3$-homothetic deformed locally symmetric $(1, -4)$-contact metric manifold is a Sasakian manifold and the Ricci soliton is shrinking. Further, $\xi^*$-projectively flat and $h$-projectively semisymmetric $(k, \mu)$-contact metric manifolds under $D_a$-homothetic deformation are studied and obtained interesting results.

Kaynakça

  • [1] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509. Springer Verlag, New York, 1973.
  • [2] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, BirkhauserBoston. Inc., Boston, 2002.
  • [3] D.E. Blair, Two remarks on contact metric structures, Tohoku Math. J., 29 (1977), 319-324.
  • [4] E. Boeckx, A full classification of contact metric (k;m)- spaces, Illinois J. Math, 44 (2000), 212-219.
  • [5] J.T. Cho, A conformally flat (k;m)-space, Indian J. Pure Appl. Math. 32 (2001), 501-508.
  • [6] U.C. De, Y.H. Kim and A.A. Shaikh, Contact metric manifolds with x belonging to (k;m)-nullity distribution, Indian J. Math., 47 (2005), 1-10.
  • [7] U.C. De, and A. Sarkara, On the quasi-conformal curvature tensor of a (k;m)-contact metric manifold, Math. Reports 14(64), 2 (2012), 115-129.
  • [8] A. Ghosh, T. Koufogiorgos and R. Sharma, Conformally flat contact metric manifolds, J. Geom., 70 (2001), 66-76.
  • [9] A. Ghosh and R. Sharma, A classification of Ricci solitons as (k;m)-contact metrics, Springer Proceedings in Mathematics and Statistics, Springer Japan, (2014), 349-358.
  • [10] R.S. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics, 71 (1988), 237-262.
  • [11] T. Ivey, Ricci solitons on compact 3-manifolds, Differential Geom. Appl. 3 (1993), 301-307.
  • [12] J.B. Jun, A. Yildiz and U.C. De, On f-recurrent (k;m)-contact metric manifolds. Bulletin of the Korean Mathematical Society, 45(4) (2008), 689-700.
  • [13] P. Majhi and G. Ghosh, Concircular vectors field in (k;m)-contact metric manifolds. International Electronic Journal of Geometry, 11(1) (2018), 52-56.
  • [14] B.J. Papantoniou, Contact Riemannian manifolds satisfying R(X;x ) R = 0 and x 2 (k;m)-nullity distribution, Yokohama Math. J., 40 (1993), 149-161.
  • [15] D.G. Prakasha, C.S. Bagewadi and Venkatesha, On pseudo projective curvature tensor of a contact metric manifold, SUT J. Math. 43 (2007), 115-126.
  • [16] R. Sharma, Certain results on K-contact and (k;m)-contact metric manifolds, J. Geom., 89 (2008), 138-147.
  • [17] R. Sharma and T. Koufogiorgos, Locally symmetric and Ricci symmetric contact metric manifolds, Ann. Global Anal. Geom., 9 (1991), 177-182.
  • [18] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Mathematical Journal, Second Series, (40(3) (1988), 441-448.
  • [19] S. Tanno, The topology of contact Riemannian manifolds, Illinois Journal of Mathematics, 12(4) (1968), 700-717.
  • [20] M.M. Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801.4222v1 [math.DG], 2008.
  • [21] M.M. Tripathi and. J.S. Kim, On the concircular curvature tensor of a (k;m)-manifold, Balkan J. Geom. Appl. 9(1) (2004), 114-124.
  • [22] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, World Scientific publishing, Singapore, 3 (1984).
Yıl 2019, Cilt: 7 Sayı: 1, 122 - 127, 15.04.2019

Öz

Kaynakça

  • [1] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509. Springer Verlag, New York, 1973.
  • [2] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, BirkhauserBoston. Inc., Boston, 2002.
  • [3] D.E. Blair, Two remarks on contact metric structures, Tohoku Math. J., 29 (1977), 319-324.
  • [4] E. Boeckx, A full classification of contact metric (k;m)- spaces, Illinois J. Math, 44 (2000), 212-219.
  • [5] J.T. Cho, A conformally flat (k;m)-space, Indian J. Pure Appl. Math. 32 (2001), 501-508.
  • [6] U.C. De, Y.H. Kim and A.A. Shaikh, Contact metric manifolds with x belonging to (k;m)-nullity distribution, Indian J. Math., 47 (2005), 1-10.
  • [7] U.C. De, and A. Sarkara, On the quasi-conformal curvature tensor of a (k;m)-contact metric manifold, Math. Reports 14(64), 2 (2012), 115-129.
  • [8] A. Ghosh, T. Koufogiorgos and R. Sharma, Conformally flat contact metric manifolds, J. Geom., 70 (2001), 66-76.
  • [9] A. Ghosh and R. Sharma, A classification of Ricci solitons as (k;m)-contact metrics, Springer Proceedings in Mathematics and Statistics, Springer Japan, (2014), 349-358.
  • [10] R.S. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics, 71 (1988), 237-262.
  • [11] T. Ivey, Ricci solitons on compact 3-manifolds, Differential Geom. Appl. 3 (1993), 301-307.
  • [12] J.B. Jun, A. Yildiz and U.C. De, On f-recurrent (k;m)-contact metric manifolds. Bulletin of the Korean Mathematical Society, 45(4) (2008), 689-700.
  • [13] P. Majhi and G. Ghosh, Concircular vectors field in (k;m)-contact metric manifolds. International Electronic Journal of Geometry, 11(1) (2018), 52-56.
  • [14] B.J. Papantoniou, Contact Riemannian manifolds satisfying R(X;x ) R = 0 and x 2 (k;m)-nullity distribution, Yokohama Math. J., 40 (1993), 149-161.
  • [15] D.G. Prakasha, C.S. Bagewadi and Venkatesha, On pseudo projective curvature tensor of a contact metric manifold, SUT J. Math. 43 (2007), 115-126.
  • [16] R. Sharma, Certain results on K-contact and (k;m)-contact metric manifolds, J. Geom., 89 (2008), 138-147.
  • [17] R. Sharma and T. Koufogiorgos, Locally symmetric and Ricci symmetric contact metric manifolds, Ann. Global Anal. Geom., 9 (1991), 177-182.
  • [18] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Mathematical Journal, Second Series, (40(3) (1988), 441-448.
  • [19] S. Tanno, The topology of contact Riemannian manifolds, Illinois Journal of Mathematics, 12(4) (1968), 700-717.
  • [20] M.M. Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801.4222v1 [math.DG], 2008.
  • [21] M.M. Tripathi and. J.S. Kim, On the concircular curvature tensor of a (k;m)-manifold, Balkan J. Geom. Appl. 9(1) (2004), 114-124.
  • [22] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, World Scientific publishing, Singapore, 3 (1984).
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Nagaraja H. G.

Kiran Kumar D. L.

Prakasha D. G.

Yayımlanma Tarihi 15 Nisan 2019
Gönderilme Tarihi 7 Ağustos 2018
Kabul Tarihi 6 Aralık 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

APA H. G., N., D. L., K. K., & D. G., P. (2019). $D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds. Konuralp Journal of Mathematics, 7(1), 122-127.
AMA H. G. N, D. L. KK, D. G. P. $D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds. Konuralp J. Math. Nisan 2019;7(1):122-127.
Chicago H. G., Nagaraja, Kiran Kumar D. L., ve Prakasha D. G. “$D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds”. Konuralp Journal of Mathematics 7, sy. 1 (Nisan 2019): 122-27.
EndNote H. G. N, D. L. KK, D. G. P (01 Nisan 2019) $D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds. Konuralp Journal of Mathematics 7 1 122–127.
IEEE N. H. G., K. K. D. L., ve P. D. G., “$D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds”, Konuralp J. Math., c. 7, sy. 1, ss. 122–127, 2019.
ISNAD H. G., Nagaraja vd. “$D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds”. Konuralp Journal of Mathematics 7/1 (Nisan 2019), 122-127.
JAMA H. G. N, D. L. KK, D. G. P. $D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds. Konuralp J. Math. 2019;7:122–127.
MLA H. G., Nagaraja vd. “$D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds”. Konuralp Journal of Mathematics, c. 7, sy. 1, 2019, ss. 122-7.
Vancouver H. G. N, D. L. KK, D. G. P. $D_{a}$-Homothetic Deformation and Ricci Solitons in $(k, \mu)-$ Contact Metric Manifolds. Konuralp J. Math. 2019;7(1):122-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.