Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 1, 207 - 210, 15.04.2020

Abstract

References

  • [1] J.S. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194-198.
  • [2] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
  • [3] E. Kolk, On strong boundedness and summability with respect to a sequence of moduli, TartuUl. Toimetised, 960 (1993), 41-50.
  • [4] P. Kostyrko, T. Salat, W. Wilczynski, I-Convergence, Real Anal. Exchange, 26(2) (2000), 669–686.
  • [5] V. Kumar, A. Sharma, Asymptotically lacunary equivalent sequences defined by ideals and modulus function, Mathematical Sciences, 6(23) (2012), 5 pages.
  • [6] G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190.
  • [7] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100 (1986), 161–166.
  • [8] M. Marouf, Asymptotic equivalence and summability, Int. J. Math. Math. Sci. 16(4) (1993), 755-762.
  • [9] M. Mursaleen, O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett. 22 (2009), 1700–1704.
  • [10] M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math. 9 (1983), 505–509.
  • [11] M. Mursaleen, On finite matrices and invariant means, Indian J. Pure and Appl. Math. 10 (1979), 457–460.
  • [12] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5 (1953), 29-49.
  • [13] F. Nuray, E. Savas¸, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math. 10 (1994), 267–274.
  • [14] F. Nuray, H. G¨ok, U. Ulusu, Is -convergence, Math. Commun. 16 (2011), 531–538.
  • [15] N. Pancaroˇglu, F. Nuray, Statistical lacunary invariant summability, Theoretical Mathematics and Applications, 3(2) (2013), 71–78.
  • [16] R. F. Patterson, On asymptotically statistically equivalent sequences, Demostratio Mathematica, 36(1) (2003), 149–153.
  • [17] S. Pehlivan, B. Fisher, Some sequences spaces defined by a modulus, Mathematica Slovaca, 45 (1995), 275-280.
  • [18] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81–94.
  • [19] E. Savas¸, Some sequence spaces involving invariant means, Indian J. Math. 31 (1989), 1–8.
  • [20] E. Savas¸, Strong s-convergent sequences, Bull. Calcutta Math. 81 (1989), 295–300.
  • [21] E. Savas¸, F. Nuray, On s-statistically convergence and lacunary s-statistically convergence, Math. Slovaca, 43(3) (1993), 309–315.
  • [22] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104–110.
  • [23] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
  • [24] U. Ulusu, Asymptotoically ideal invariant equivalence, Creat. Math. Inform. 27 (2018), 215-220.

$f$-Asymptotically $\mathcal{I}_{\sigma}$-Equivalence of Real Sequences

Year 2020, Volume: 8 Issue: 1, 207 - 210, 15.04.2020

Abstract

In this study, we present the notions of strongly asymptotically $\mathcal{I}$-invariant equivalence, $f$-asymptotically $\mathcal{I}$-invariant equivalence, strongly $f$-asymptotically $\mathcal{I}$-invariant equivalence and asymptotically $\mathcal{I}$-invariant statistical equivalence for real sequences. Also, we investigate some relationships among them.

References

  • [1] J.S. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194-198.
  • [2] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
  • [3] E. Kolk, On strong boundedness and summability with respect to a sequence of moduli, TartuUl. Toimetised, 960 (1993), 41-50.
  • [4] P. Kostyrko, T. Salat, W. Wilczynski, I-Convergence, Real Anal. Exchange, 26(2) (2000), 669–686.
  • [5] V. Kumar, A. Sharma, Asymptotically lacunary equivalent sequences defined by ideals and modulus function, Mathematical Sciences, 6(23) (2012), 5 pages.
  • [6] G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190.
  • [7] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100 (1986), 161–166.
  • [8] M. Marouf, Asymptotic equivalence and summability, Int. J. Math. Math. Sci. 16(4) (1993), 755-762.
  • [9] M. Mursaleen, O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett. 22 (2009), 1700–1704.
  • [10] M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math. 9 (1983), 505–509.
  • [11] M. Mursaleen, On finite matrices and invariant means, Indian J. Pure and Appl. Math. 10 (1979), 457–460.
  • [12] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5 (1953), 29-49.
  • [13] F. Nuray, E. Savas¸, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math. 10 (1994), 267–274.
  • [14] F. Nuray, H. G¨ok, U. Ulusu, Is -convergence, Math. Commun. 16 (2011), 531–538.
  • [15] N. Pancaroˇglu, F. Nuray, Statistical lacunary invariant summability, Theoretical Mathematics and Applications, 3(2) (2013), 71–78.
  • [16] R. F. Patterson, On asymptotically statistically equivalent sequences, Demostratio Mathematica, 36(1) (2003), 149–153.
  • [17] S. Pehlivan, B. Fisher, Some sequences spaces defined by a modulus, Mathematica Slovaca, 45 (1995), 275-280.
  • [18] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81–94.
  • [19] E. Savas¸, Some sequence spaces involving invariant means, Indian J. Math. 31 (1989), 1–8.
  • [20] E. Savas¸, Strong s-convergent sequences, Bull. Calcutta Math. 81 (1989), 295–300.
  • [21] E. Savas¸, F. Nuray, On s-statistically convergence and lacunary s-statistically convergence, Math. Slovaca, 43(3) (1993), 309–315.
  • [22] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104–110.
  • [23] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
  • [24] U. Ulusu, Asymptotoically ideal invariant equivalence, Creat. Math. Inform. 27 (2018), 215-220.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Erdinç Dundar

Nimet Akın

Publication Date April 15, 2020
Submission Date March 26, 2020
Acceptance Date April 11, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Dundar, E., & Akın, N. (2020). $f$-Asymptotically $\mathcal{I}_{\sigma}$-Equivalence of Real Sequences. Konuralp Journal of Mathematics, 8(1), 207-210.
AMA Dundar E, Akın N. $f$-Asymptotically $\mathcal{I}_{\sigma}$-Equivalence of Real Sequences. Konuralp J. Math. April 2020;8(1):207-210.
Chicago Dundar, Erdinç, and Nimet Akın. “$f$-Asymptotically $\mathcal{I}_{\sigma}$-Equivalence of Real Sequences”. Konuralp Journal of Mathematics 8, no. 1 (April 2020): 207-10.
EndNote Dundar E, Akın N (April 1, 2020) $f$-Asymptotically $\mathcal{I}_{\sigma}$-Equivalence of Real Sequences. Konuralp Journal of Mathematics 8 1 207–210.
IEEE E. Dundar and N. Akın, “$f$-Asymptotically $\mathcal{I}_{\sigma}$-Equivalence of Real Sequences”, Konuralp J. Math., vol. 8, no. 1, pp. 207–210, 2020.
ISNAD Dundar, Erdinç - Akın, Nimet. “$f$-Asymptotically $\mathcal{I}_{\sigma}$-Equivalence of Real Sequences”. Konuralp Journal of Mathematics 8/1 (April 2020), 207-210.
JAMA Dundar E, Akın N. $f$-Asymptotically $\mathcal{I}_{\sigma}$-Equivalence of Real Sequences. Konuralp J. Math. 2020;8:207–210.
MLA Dundar, Erdinç and Nimet Akın. “$f$-Asymptotically $\mathcal{I}_{\sigma}$-Equivalence of Real Sequences”. Konuralp Journal of Mathematics, vol. 8, no. 1, 2020, pp. 207-10.
Vancouver Dundar E, Akın N. $f$-Asymptotically $\mathcal{I}_{\sigma}$-Equivalence of Real Sequences. Konuralp J. Math. 2020;8(1):207-10.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.