Research Article
BibTex RIS Cite

Some Properties of Lacunary Convergence and Lacunary Ideal Convergence in Fuzzy Normed Spaces

Year 2020, Volume: 8 Issue: 2, 343 - 348, 27.10.2020

Abstract

In this study, firstly lacunary convergence and lacunary ideal convergence is introduced in fuzzy normed spaces. Later, the relation between lacunary convergence and lacunary ideal convergence are investigated in fuzzy normed spaces. Finally, we have introduced the concept of $F\mathcal{I}_{\theta }-$ limit point, $F\mathcal{I}_{\theta }-$cluster point, $F\theta -$Cauchy sequence and $F\mathcal{I}_{\theta }-$Cauchy sequences have introduced in fuzzy normed space.                                                                                               

References

  • [1] T. Bag and S. Samanta. Fixed point theorems in felbin’s type fuzzy normed linear spaces. J. Fuzzy Math., 16(1):243–260, 2008.
  • [2] M. C¸ inar and M. Et. q-Double Cesaro Matrices and q-Statistical Convergence of Double Sequences. Natl. Acad. Sci. Lett., 43, 73–76, 2020. https://doi.org/10.1007/s40009-019-00808-y
  • [3] M. Cinar and M. Et. Dm-statistical convergence of order a for double sequences of functions. Facta Universitatis, Series: Mathematics and Informatics, 35(2), 393–404, 2020.
  • [4] J. Connor. The statistical and strong p-cesaro convergence of sequences. Analysis, 8:47–63, 1988.
  • [5] P. Debnath. Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces. Computers and Mathematics with Applications , 63(3):708–715, 2012.
  • [6] P. Debnath and S. Mausumi. Some Completeness Results in Terms of Infinite Series and Quotient Spaces in Intuitionistic Fuzzy N-normed Linear Spaces. Journal of Intelligent and Fuzzy Systems, 26(2):975-982, 2014.
  • [7] P. Debnath and S. Mausumi. Some results of calculus for functions having values in an intuitionistic fuzzy n-normed linear space. Journal of Intelligent and Fuzzy Systems, 26(6):2983-2991, 2014.
  • [8] P. Debnath. Results on Lacunary Difference Ideal Convergence in Intuitionistic Fuzzy Normed Linear Spaces. Journal of Intelligent and Fuzzy Systems, 28(3):1299-1306, 2015.
  • [9] P. Debnath. A generalized statistical convergence in intuitionistic fuzzy n-normed linear spaces. Annals of Fuzzy Mathematics and Informatics, 12(4):559–572, 2016.
  • [10] E. Dundar, M. R. Turkmen and N. Pancaraoglu Akın. Regularly ideal convergence of double Sequences in fuzzy normed spaces. Bulletin of Mathematical Analysis and Applications, 12(2):12–26, 2020.
  • [11] E. Dundar and M. R. Turkmen. On I2-Cauchy Double Sequences in Fuzzy Normed Spaces. Communications in Advanced Mathematical Sciences, 2(2):154–160, 2020.
  • [12] E. Dundar, N. Pancaraoglu Akın and U. Ulusu. Wijsman Lacunary I-Invariant Convergence of Sequences of Sets. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020. https://doi.org/10.1007/s40010-020-00694-w.
  • [13] M. Et, M. Cinar and H. S. Kandemir. Deferred statistical convergence of order a in metric spaces function. AIMS Mathematics, 5(4), 3731–3740, 2020.
  • [14] H. Fast. Sur la convergence statistique. Colloq. Math., 10:142–149, 1951.
  • [15] C. Felbin. Finite-dimensional fuzzy normed linear space. Fuzzy Sets and Systems, 48(2):239–248, 1992.
  • [16] J. A. Fridy. On statistical convergence. Analysis, 5:301–313, 1985.
  • [17] J. A. Fridy and C. Orhan. Lacunary statistical summability. Jour Math.Anal.Appl, 173(2):497–504, 1993.
  • [18] B. Hazarika. On ideal convergent sequences in fuzzy normed linear spaces. Afrika Matematika, 25(4):987–999, 2013.
  • [19] B. Hazarika and V. Kumar. Fuzzy real valued I-convergent double sequences in fuzzy normed spaces. Journal of Intelligent and Fuzzy Systems, 26:2323–2332, 2014.
  • [20] A. Katsaras. Fuzzy topological vector spaces. Fuzzy sets and systems, 12:143–154, 1984.
  • [21] N. Konwar. Continuity and Banach contraction principle in intuitionistic fuzzy n-normed linear spaces. Journal of Intelligent and Fuzzy Systems,33(4):2363-2373, 2017.
  • [22] P. Kostyrko, T. ˘ Sal´at, and W. Wilczy´nski. I-convergence. Real Anal. Exchange, 26(2):669–686, 2000.
  • [23] V. Kumar and K. Kumar. On the ideal convergence of sequences of fuzzy numbers. Inform. Sci., 178:4670–4678, 2008.
  • [24] M. Matloka. Sequences of fuzzy numbers. Busefal, 28:28–37, 1986.
  • [25] S. Mohiuddine, H.S. evli, and M. Cancan. Statistical convergence of double sequences in fuzzy normed spaces. Filomat, 26(4):673–681, 2012.
  • [26] M. Mursaleen and O. Edely. Statistical convergence of double sequences. J.Math.Anal.Appl., 288:223–231, 2003.
  • [27] S. Nanda. On sequences of fuzzy numbers. Fuzzy Sets Systems, 33:123–126, 1989.
  • [28] F. Nuray. Lacunary statistical convergence of sequences of fuzzy numbers. Fuzzy Sets and Systems, 99:353–355, 1998.
  • [29] F. Nuray and W. Ruckle. Generalized statistical convergence and convergence free spaces. J. Math. Anal. Appl., 245:513–527, 2000.
  • [30] F. Nuray and E. Savas¸. Statistical convergence of sequences of fuzzy numbers. Math. Slovaca, 45(3):269–273, 1995.
  • [31] F. Nuray, U. Ulusu, and E. Dundar. Lacunary statistical convergence of double sequences of sets. Soft Computing, 20(7):2883–2888, 2016.
  • [32] A. Pringsheim. Zur theorie der zweifach unendlichen zahlenfolgen. Math. Ann., 53:289–321, 1900.
  • [33] D. Rath and B. Tripaty. On statistically convergence and statistically cauchy sequences. Indian J. Pure Appl. Math., 25(4):381–386, 1994.
  • [34] T. ˘ Sal´at. On statistically convergent sequences of real numbers. Math. Slovaca, 30:139–150, 1980.
  • [35] E. Savas¸. On statistical convergent sequences of fuzzy numbers. Inform. Sci., 277-282:137, 2001.
  • [36] C.S. enc.imen and S. Pehlivan. Statistical convergence in fuzzy normed linear spaces. Fuzzy Sets and Systems, 159:361–370, 2008.
  • [37] I. J. Schoenberg. The integrability of certain functions and related summability methods. Amer. Math. Monthly, 66:361–375, 1959.
  • [38] H. Steinhaus. Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math., 2:73–74, 1951.
  • [39] M. R. T¨urkmen and M. Cınar. Lacunary statistical convergence in fuzzy normed linear spaces. Applied and Computational Mathematics, 6(5):233–237, 2017.
  • [40] M. R. Turkmen and M. Cınar. l􀀀statistical convergence in fuzzy normed linear spaces. Journal of Intelligent and Fuzzy Systems, 34(6):4023–4030, 2018.
  • [41] M. R. T¨urkmen. On lacunary statistical convergence and some properties in fuzzy n-normed spaces. i-manager’s Journal on Mathematics, 7(3):1–9, 2018.
  • [42] M. R. T¨urkmen. On lacunary I2-convergence of double sequences and some properties in fuzzy n-normed space. AKU J. Sci.Eng, 18(3):868–877, 2018.
  • [43] M. R. T¨urkmen and E. D¨undar. On lacunary statistical convergence of double sequences and some properties in fuzzy normed spaces. Journal of Intelligent and Fuzzy Systems, 36(2):1683–1690, 2019.
  • [44] L. Zadeh. Fuzzy sets. Inform. Contr., 6(5):29–44, 1965.
Year 2020, Volume: 8 Issue: 2, 343 - 348, 27.10.2020

Abstract

References

  • [1] T. Bag and S. Samanta. Fixed point theorems in felbin’s type fuzzy normed linear spaces. J. Fuzzy Math., 16(1):243–260, 2008.
  • [2] M. C¸ inar and M. Et. q-Double Cesaro Matrices and q-Statistical Convergence of Double Sequences. Natl. Acad. Sci. Lett., 43, 73–76, 2020. https://doi.org/10.1007/s40009-019-00808-y
  • [3] M. Cinar and M. Et. Dm-statistical convergence of order a for double sequences of functions. Facta Universitatis, Series: Mathematics and Informatics, 35(2), 393–404, 2020.
  • [4] J. Connor. The statistical and strong p-cesaro convergence of sequences. Analysis, 8:47–63, 1988.
  • [5] P. Debnath. Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces. Computers and Mathematics with Applications , 63(3):708–715, 2012.
  • [6] P. Debnath and S. Mausumi. Some Completeness Results in Terms of Infinite Series and Quotient Spaces in Intuitionistic Fuzzy N-normed Linear Spaces. Journal of Intelligent and Fuzzy Systems, 26(2):975-982, 2014.
  • [7] P. Debnath and S. Mausumi. Some results of calculus for functions having values in an intuitionistic fuzzy n-normed linear space. Journal of Intelligent and Fuzzy Systems, 26(6):2983-2991, 2014.
  • [8] P. Debnath. Results on Lacunary Difference Ideal Convergence in Intuitionistic Fuzzy Normed Linear Spaces. Journal of Intelligent and Fuzzy Systems, 28(3):1299-1306, 2015.
  • [9] P. Debnath. A generalized statistical convergence in intuitionistic fuzzy n-normed linear spaces. Annals of Fuzzy Mathematics and Informatics, 12(4):559–572, 2016.
  • [10] E. Dundar, M. R. Turkmen and N. Pancaraoglu Akın. Regularly ideal convergence of double Sequences in fuzzy normed spaces. Bulletin of Mathematical Analysis and Applications, 12(2):12–26, 2020.
  • [11] E. Dundar and M. R. Turkmen. On I2-Cauchy Double Sequences in Fuzzy Normed Spaces. Communications in Advanced Mathematical Sciences, 2(2):154–160, 2020.
  • [12] E. Dundar, N. Pancaraoglu Akın and U. Ulusu. Wijsman Lacunary I-Invariant Convergence of Sequences of Sets. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020. https://doi.org/10.1007/s40010-020-00694-w.
  • [13] M. Et, M. Cinar and H. S. Kandemir. Deferred statistical convergence of order a in metric spaces function. AIMS Mathematics, 5(4), 3731–3740, 2020.
  • [14] H. Fast. Sur la convergence statistique. Colloq. Math., 10:142–149, 1951.
  • [15] C. Felbin. Finite-dimensional fuzzy normed linear space. Fuzzy Sets and Systems, 48(2):239–248, 1992.
  • [16] J. A. Fridy. On statistical convergence. Analysis, 5:301–313, 1985.
  • [17] J. A. Fridy and C. Orhan. Lacunary statistical summability. Jour Math.Anal.Appl, 173(2):497–504, 1993.
  • [18] B. Hazarika. On ideal convergent sequences in fuzzy normed linear spaces. Afrika Matematika, 25(4):987–999, 2013.
  • [19] B. Hazarika and V. Kumar. Fuzzy real valued I-convergent double sequences in fuzzy normed spaces. Journal of Intelligent and Fuzzy Systems, 26:2323–2332, 2014.
  • [20] A. Katsaras. Fuzzy topological vector spaces. Fuzzy sets and systems, 12:143–154, 1984.
  • [21] N. Konwar. Continuity and Banach contraction principle in intuitionistic fuzzy n-normed linear spaces. Journal of Intelligent and Fuzzy Systems,33(4):2363-2373, 2017.
  • [22] P. Kostyrko, T. ˘ Sal´at, and W. Wilczy´nski. I-convergence. Real Anal. Exchange, 26(2):669–686, 2000.
  • [23] V. Kumar and K. Kumar. On the ideal convergence of sequences of fuzzy numbers. Inform. Sci., 178:4670–4678, 2008.
  • [24] M. Matloka. Sequences of fuzzy numbers. Busefal, 28:28–37, 1986.
  • [25] S. Mohiuddine, H.S. evli, and M. Cancan. Statistical convergence of double sequences in fuzzy normed spaces. Filomat, 26(4):673–681, 2012.
  • [26] M. Mursaleen and O. Edely. Statistical convergence of double sequences. J.Math.Anal.Appl., 288:223–231, 2003.
  • [27] S. Nanda. On sequences of fuzzy numbers. Fuzzy Sets Systems, 33:123–126, 1989.
  • [28] F. Nuray. Lacunary statistical convergence of sequences of fuzzy numbers. Fuzzy Sets and Systems, 99:353–355, 1998.
  • [29] F. Nuray and W. Ruckle. Generalized statistical convergence and convergence free spaces. J. Math. Anal. Appl., 245:513–527, 2000.
  • [30] F. Nuray and E. Savas¸. Statistical convergence of sequences of fuzzy numbers. Math. Slovaca, 45(3):269–273, 1995.
  • [31] F. Nuray, U. Ulusu, and E. Dundar. Lacunary statistical convergence of double sequences of sets. Soft Computing, 20(7):2883–2888, 2016.
  • [32] A. Pringsheim. Zur theorie der zweifach unendlichen zahlenfolgen. Math. Ann., 53:289–321, 1900.
  • [33] D. Rath and B. Tripaty. On statistically convergence and statistically cauchy sequences. Indian J. Pure Appl. Math., 25(4):381–386, 1994.
  • [34] T. ˘ Sal´at. On statistically convergent sequences of real numbers. Math. Slovaca, 30:139–150, 1980.
  • [35] E. Savas¸. On statistical convergent sequences of fuzzy numbers. Inform. Sci., 277-282:137, 2001.
  • [36] C.S. enc.imen and S. Pehlivan. Statistical convergence in fuzzy normed linear spaces. Fuzzy Sets and Systems, 159:361–370, 2008.
  • [37] I. J. Schoenberg. The integrability of certain functions and related summability methods. Amer. Math. Monthly, 66:361–375, 1959.
  • [38] H. Steinhaus. Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math., 2:73–74, 1951.
  • [39] M. R. T¨urkmen and M. Cınar. Lacunary statistical convergence in fuzzy normed linear spaces. Applied and Computational Mathematics, 6(5):233–237, 2017.
  • [40] M. R. Turkmen and M. Cınar. l􀀀statistical convergence in fuzzy normed linear spaces. Journal of Intelligent and Fuzzy Systems, 34(6):4023–4030, 2018.
  • [41] M. R. T¨urkmen. On lacunary statistical convergence and some properties in fuzzy n-normed spaces. i-manager’s Journal on Mathematics, 7(3):1–9, 2018.
  • [42] M. R. T¨urkmen. On lacunary I2-convergence of double sequences and some properties in fuzzy n-normed space. AKU J. Sci.Eng, 18(3):868–877, 2018.
  • [43] M. R. T¨urkmen and E. D¨undar. On lacunary statistical convergence of double sequences and some properties in fuzzy normed spaces. Journal of Intelligent and Fuzzy Systems, 36(2):1683–1690, 2019.
  • [44] L. Zadeh. Fuzzy sets. Inform. Contr., 6(5):29–44, 1965.
There are 44 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Muhammed Recai Türkmen

Publication Date October 27, 2020
Submission Date September 14, 2020
Acceptance Date October 13, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Türkmen, M. R. (2020). Some Properties of Lacunary Convergence and Lacunary Ideal Convergence in Fuzzy Normed Spaces. Konuralp Journal of Mathematics, 8(2), 343-348.
AMA Türkmen MR. Some Properties of Lacunary Convergence and Lacunary Ideal Convergence in Fuzzy Normed Spaces. Konuralp J. Math. October 2020;8(2):343-348.
Chicago Türkmen, Muhammed Recai. “Some Properties of Lacunary Convergence and Lacunary Ideal Convergence in Fuzzy Normed Spaces”. Konuralp Journal of Mathematics 8, no. 2 (October 2020): 343-48.
EndNote Türkmen MR (October 1, 2020) Some Properties of Lacunary Convergence and Lacunary Ideal Convergence in Fuzzy Normed Spaces. Konuralp Journal of Mathematics 8 2 343–348.
IEEE M. R. Türkmen, “Some Properties of Lacunary Convergence and Lacunary Ideal Convergence in Fuzzy Normed Spaces”, Konuralp J. Math., vol. 8, no. 2, pp. 343–348, 2020.
ISNAD Türkmen, Muhammed Recai. “Some Properties of Lacunary Convergence and Lacunary Ideal Convergence in Fuzzy Normed Spaces”. Konuralp Journal of Mathematics 8/2 (October 2020), 343-348.
JAMA Türkmen MR. Some Properties of Lacunary Convergence and Lacunary Ideal Convergence in Fuzzy Normed Spaces. Konuralp J. Math. 2020;8:343–348.
MLA Türkmen, Muhammed Recai. “Some Properties of Lacunary Convergence and Lacunary Ideal Convergence in Fuzzy Normed Spaces”. Konuralp Journal of Mathematics, vol. 8, no. 2, 2020, pp. 343-8.
Vancouver Türkmen MR. Some Properties of Lacunary Convergence and Lacunary Ideal Convergence in Fuzzy Normed Spaces. Konuralp J. Math. 2020;8(2):343-8.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.