Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 10 Sayı: 1, 112 - 117, 15.04.2022

Öz

Destekleyen Kurum

yok

Proje Numarası

yok

Teşekkür

Dergi ve Hakemlere şimdiden teşekkür ederiz.

Kaynakça

  • [1] B. Y. Chen and S. Ishikawa, Biharmonic Surface in Pseudo-Euclidean Spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, Vol:45, No.2 (1991) , p. 323–347.
  • [2] O. Cakır and S. Senyurt, Harmonicity and Differential Equation of Involute of a Curve in E^3, Thermal Science, Vol: 23, No.6 (2019), p. 2119–2125.
  • [3] K. Arslan, H. Kocayigit and M. Onder, Characterizations of Space Curves with 1-type Darboux Instantaneou Rotation Vector, Commun. Korean Math. ¨Soc., Vol: 31, No.2 (2016), p. 379–388.
  • [4] S. Senyurt and O. C¸ akır, Characterizations of Curves According to Frenet Frame in Euclidean Space, Turk. J. Math. Comput. Sci., Vol: 11, No.1 (2019),p. 48–52.
  • [5] S. Senyurt and O. Cakır, Diferential Equations for a Space Curve According to the Unit Darboux Vector, Turk. J. Math. Comput. Sci., Vol: 9, No.1 (2018), p. 91–97.
  • [6] Sabuncuoglu A., Diferensiyel Geometri, Nobel Akademik Yayincilik, Ankara, 2014.
  • [7] S. Senyurt, A. Calıskan and U. Celik, N∗C∗–Smarandache Curve of Bertrand Curves Pair According to Frenet Frame, International J.Math. Combin.,Vol:1, (2016), p. 1–7.
  • [8] O. Cakır and S. Senyurt, On Harmonicity and Differential Equations of a Bertrand Curve in E^3, arXiv: 2103.0301

Characterizations of a Bertrand Curve According to Darboux Vector

Yıl 2022, Cilt: 10 Sayı: 1, 112 - 117, 15.04.2022

Öz

In this paper, we first take a Bertrand curve pair and then we use Darboux vector instead of mean curvature vector to give characterizations of Bertrand partner curve by means of the Bertrand curve. By making use of the relations between the Frenet frames of the Bertrand curve pair we give the differential equations and sufficient conditions of harmonicity(biharmonic or 1-type harmonic) of the Bertrand partner curve in terms of the Darboux vector of the Bertrand curve. After driving the conclusions we write an example to demonstrate how our assumptions come true

Proje Numarası

yok

Kaynakça

  • [1] B. Y. Chen and S. Ishikawa, Biharmonic Surface in Pseudo-Euclidean Spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, Vol:45, No.2 (1991) , p. 323–347.
  • [2] O. Cakır and S. Senyurt, Harmonicity and Differential Equation of Involute of a Curve in E^3, Thermal Science, Vol: 23, No.6 (2019), p. 2119–2125.
  • [3] K. Arslan, H. Kocayigit and M. Onder, Characterizations of Space Curves with 1-type Darboux Instantaneou Rotation Vector, Commun. Korean Math. ¨Soc., Vol: 31, No.2 (2016), p. 379–388.
  • [4] S. Senyurt and O. C¸ akır, Characterizations of Curves According to Frenet Frame in Euclidean Space, Turk. J. Math. Comput. Sci., Vol: 11, No.1 (2019),p. 48–52.
  • [5] S. Senyurt and O. Cakır, Diferential Equations for a Space Curve According to the Unit Darboux Vector, Turk. J. Math. Comput. Sci., Vol: 9, No.1 (2018), p. 91–97.
  • [6] Sabuncuoglu A., Diferensiyel Geometri, Nobel Akademik Yayincilik, Ankara, 2014.
  • [7] S. Senyurt, A. Calıskan and U. Celik, N∗C∗–Smarandache Curve of Bertrand Curves Pair According to Frenet Frame, International J.Math. Combin.,Vol:1, (2016), p. 1–7.
  • [8] O. Cakır and S. Senyurt, On Harmonicity and Differential Equations of a Bertrand Curve in E^3, arXiv: 2103.0301
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Süleyman Şenyurt

Osman Çakır 0000-0002-2664-5232

Proje Numarası yok
Yayımlanma Tarihi 15 Nisan 2022
Gönderilme Tarihi 15 Mart 2021
Kabul Tarihi 2 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 1

Kaynak Göster

APA Şenyurt, S., & Çakır, O. (2022). Characterizations of a Bertrand Curve According to Darboux Vector. Konuralp Journal of Mathematics, 10(1), 112-117.
AMA Şenyurt S, Çakır O. Characterizations of a Bertrand Curve According to Darboux Vector. Konuralp J. Math. Nisan 2022;10(1):112-117.
Chicago Şenyurt, Süleyman, ve Osman Çakır. “Characterizations of a Bertrand Curve According to Darboux Vector”. Konuralp Journal of Mathematics 10, sy. 1 (Nisan 2022): 112-17.
EndNote Şenyurt S, Çakır O (01 Nisan 2022) Characterizations of a Bertrand Curve According to Darboux Vector. Konuralp Journal of Mathematics 10 1 112–117.
IEEE S. Şenyurt ve O. Çakır, “Characterizations of a Bertrand Curve According to Darboux Vector”, Konuralp J. Math., c. 10, sy. 1, ss. 112–117, 2022.
ISNAD Şenyurt, Süleyman - Çakır, Osman. “Characterizations of a Bertrand Curve According to Darboux Vector”. Konuralp Journal of Mathematics 10/1 (Nisan 2022), 112-117.
JAMA Şenyurt S, Çakır O. Characterizations of a Bertrand Curve According to Darboux Vector. Konuralp J. Math. 2022;10:112–117.
MLA Şenyurt, Süleyman ve Osman Çakır. “Characterizations of a Bertrand Curve According to Darboux Vector”. Konuralp Journal of Mathematics, c. 10, sy. 1, 2022, ss. 112-7.
Vancouver Şenyurt S, Çakır O. Characterizations of a Bertrand Curve According to Darboux Vector. Konuralp J. Math. 2022;10(1):112-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.