Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 1 Sayı: 1, 47 - 52, 08.08.2018

Öz

Kaynakça

  • Rodrigues F. A.,, Joekes I., (2011). Cement industry: sustainability, challenges and perspectives. Environmental Chemistry Letters, 9(2), 151-166.
  • Sébaıbi Y., Dheilly R. M., Quéneudec M., (2004). A study of the viscosity of lime–cement paste: influence of the physico-chemical characteristics of lime. Construction and Building Materials, 18(9), 653-660.
  • Robery P., Shaw M. J., (1997). Materials for the repair and protection of concrete. Construction and building materials, 11(5-6), 275-281.
  • Mosquera M. J., Benı́tez D., Perry S. H., (2002). Pore structure in mortars applied on restoration: Effect on properties relevant to decay of granite buildings. Cement and concrete research, 32(12), 1883-1888.
  • Enevoldsen J. N., Hansson C. M., Hope B. B., (1994). The influence of internal relative humidity on the rate of corrosion of steel embedded in concrete and mortar. Cement and concrete research, 24(7), 1373-1382.
  • Fernandes V., Silva L., Ferreira V. M., Labrincha J. A., (2005). Influence of the kneading water content in the behaviour of single-coat mortars. Cement and concrete research, 35(10), 1900-1908.
  • Yildirim S. T., Kiraz E., (2013). Investigation of binders composition and curing condition of masonry samples with fly ash and expanded pearlite. Cement Wapno Beton 18.80, nr 3: 169-177.
  • Keskin F. Ş., Yildirim S. T., (2016). Investigation of Utilization of Perlite and Bottom Ash for the Insulation Mortar by Using Design of Experiment via Taguchi Method. El-Cezeri Journal of Science and Engineering, 3(1).
  • Uluer O., Karaağaç İ., Aktaş M., Durmuş G., Ağbulut Ü., Khanlari A., Çelik D. N., (2018). Genleştirilmiş perlitin ısı yalıtım teknolojilerinde kullanılabilirliğinin incelenmesi. Pamukkale University Journal of Engineering Sciences, 24(1).
  • Topçu İ. B., Işıkdağ B., (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of materials processing technology, 204(1-3), 34-38.
  • Turhan Ş., Gündüz L., (2008). Determination of specific activity of 226Ra, 232Th and 40K for assessment of radiation hazards from Turkish pumice samples. Journal of environmental radioactivity, 99(2), 332-342.
  • Zukowski M., Haese G., (2010). Experimental and numerical investigation of a hollow brick filled with perlite insulation. Energy and Buildings, 42(9), 1402-1408.
  • Uygunoğlu T., Keçebaş A., (2011). LCC analysis for energy-saving in residential buildings with different types of construction masonry blocks. Energy and Buildings, 43(9), 2077-2085.
  • Yüksek Í., (2015). The evaluation of building materials in terms of energy efficiency. Periodica Polytechnica. Civil Engineering, 59(1), 45.
  • Sariisik A., Sariisik G., (2012). New production process for insulation blocks composed of EPS and lightweight concrete containing pumice aggregate. Materials and structures, 45(9), 1345-1357.
  • Ochs F., Heidemann W., Müller-Steinhagen H., (2008). Effective thermal conductivity of moistened insulation materials as a function of temperature. International Journal of Heat and Mass Transfer, 51(3-4), 539-552.
  • Doğan-Sağlamtimur N., Güven A., Bilgil A., (2018). Physical and Mechanical Properties of Cemented Ash-Based Lightweight Building Materials with and without Pumice. Advances in Materials Science and Engineering, DOI: 10.1155/2018/9368787
  • ASTM C109/C109M-05. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens). ASTM International; 2005.
  • ASTM, C1585-04. Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. ASTM International, 2004.
  • TS EN 12664 (EN 12664)Thermal Performance of Building Materials and Products – Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods – Dry and Moist Products of Medium and Low Thermal Resistance, Turkish Standards Institution (2009).

Bims Agregalı ve Genleştirilmiş Perlit Agregalı Hafif Kompozit Harçların Özelliklerinin Deneysel Olarak İncelenmesi

Yıl 2018, Cilt: 1 Sayı: 1, 47 - 52, 08.08.2018

Öz

Hafif agregalar kullanılarak; hafif beton, duvar
bloğu, sıva ve şap gibi bağlayıcısı çimento olan birçok hafif ve yalıtımlı
kompozit ürün elde edilmektedir. Özellikle genleştirilmiş perlit ve bims
agregaları bu kompozitlerde kullanılan agrega türlerinden en popüler
olanlarıdır. Bu çalışmada hacimsel olarak %0, 25, 50, 75 ve 100 oranlarında
genleştirilmiş perlit ve bims agregaları ile m
3‘te 250 kg çimento
kullanılarak üretilen kompozit harçlar kullanılmıştır. Elde edilen 5 tip numune
üzerinde; kuru birim ağırlık, su emme, basınç dayanımı, kılcal su emme ve ısıl
iletkenlik testleri yapılmıştır. Elde edilen sonuçlara göre bims agregası
arttıkça basınç dayanımı, su emme ve kılcallık özellikleri olumlu etkilenirken,
kuru birim ağırlık ve ısıl iletkenlik özellikleri olumsuz etkilenmiştir.
Özellikle genleştirilmiş perlit ve bims agregalarının %50 oranlarında
karıştırılmasının en iyi sonuçları verdiği gözlenmiştir.

Kaynakça

  • Rodrigues F. A.,, Joekes I., (2011). Cement industry: sustainability, challenges and perspectives. Environmental Chemistry Letters, 9(2), 151-166.
  • Sébaıbi Y., Dheilly R. M., Quéneudec M., (2004). A study of the viscosity of lime–cement paste: influence of the physico-chemical characteristics of lime. Construction and Building Materials, 18(9), 653-660.
  • Robery P., Shaw M. J., (1997). Materials for the repair and protection of concrete. Construction and building materials, 11(5-6), 275-281.
  • Mosquera M. J., Benı́tez D., Perry S. H., (2002). Pore structure in mortars applied on restoration: Effect on properties relevant to decay of granite buildings. Cement and concrete research, 32(12), 1883-1888.
  • Enevoldsen J. N., Hansson C. M., Hope B. B., (1994). The influence of internal relative humidity on the rate of corrosion of steel embedded in concrete and mortar. Cement and concrete research, 24(7), 1373-1382.
  • Fernandes V., Silva L., Ferreira V. M., Labrincha J. A., (2005). Influence of the kneading water content in the behaviour of single-coat mortars. Cement and concrete research, 35(10), 1900-1908.
  • Yildirim S. T., Kiraz E., (2013). Investigation of binders composition and curing condition of masonry samples with fly ash and expanded pearlite. Cement Wapno Beton 18.80, nr 3: 169-177.
  • Keskin F. Ş., Yildirim S. T., (2016). Investigation of Utilization of Perlite and Bottom Ash for the Insulation Mortar by Using Design of Experiment via Taguchi Method. El-Cezeri Journal of Science and Engineering, 3(1).
  • Uluer O., Karaağaç İ., Aktaş M., Durmuş G., Ağbulut Ü., Khanlari A., Çelik D. N., (2018). Genleştirilmiş perlitin ısı yalıtım teknolojilerinde kullanılabilirliğinin incelenmesi. Pamukkale University Journal of Engineering Sciences, 24(1).
  • Topçu İ. B., Işıkdağ B., (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of materials processing technology, 204(1-3), 34-38.
  • Turhan Ş., Gündüz L., (2008). Determination of specific activity of 226Ra, 232Th and 40K for assessment of radiation hazards from Turkish pumice samples. Journal of environmental radioactivity, 99(2), 332-342.
  • Zukowski M., Haese G., (2010). Experimental and numerical investigation of a hollow brick filled with perlite insulation. Energy and Buildings, 42(9), 1402-1408.
  • Uygunoğlu T., Keçebaş A., (2011). LCC analysis for energy-saving in residential buildings with different types of construction masonry blocks. Energy and Buildings, 43(9), 2077-2085.
  • Yüksek Í., (2015). The evaluation of building materials in terms of energy efficiency. Periodica Polytechnica. Civil Engineering, 59(1), 45.
  • Sariisik A., Sariisik G., (2012). New production process for insulation blocks composed of EPS and lightweight concrete containing pumice aggregate. Materials and structures, 45(9), 1345-1357.
  • Ochs F., Heidemann W., Müller-Steinhagen H., (2008). Effective thermal conductivity of moistened insulation materials as a function of temperature. International Journal of Heat and Mass Transfer, 51(3-4), 539-552.
  • Doğan-Sağlamtimur N., Güven A., Bilgil A., (2018). Physical and Mechanical Properties of Cemented Ash-Based Lightweight Building Materials with and without Pumice. Advances in Materials Science and Engineering, DOI: 10.1155/2018/9368787
  • ASTM C109/C109M-05. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens). ASTM International; 2005.
  • ASTM, C1585-04. Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. ASTM International, 2004.
  • TS EN 12664 (EN 12664)Thermal Performance of Building Materials and Products – Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods – Dry and Moist Products of Medium and Low Thermal Resistance, Turkish Standards Institution (2009).
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Salih Taner Yıldırım 0000-0003-0021-0625

Erman Baba Bu kişi benim

Yayımlanma Tarihi 8 Ağustos 2018
Kabul Tarihi 12 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 1

Kaynak Göster

APA Yıldırım, S. T., & Baba, E. (2018). Bims Agregalı ve Genleştirilmiş Perlit Agregalı Hafif Kompozit Harçların Özelliklerinin Deneysel Olarak İncelenmesi. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 1(1), 47-52.