Derleme
BibTex RIS Kaynak Göster

Rüzgar Enerji Santrallerinin Elektrik Şebekesine Etkilerinin İncelenmesi

Yıl 2022, Cilt: 5 Sayı: 2, 50 - 65, 31.12.2022
https://doi.org/10.53410/koufbd.1096254

Öz

Rüzgar enerjisinin elektrik üretiminde kullanımının küresel çapta artmasına paralel olarak Türkiye’de de son yıllarda rüzgardan elde edilen elektrik enerjisi oldukça artmıştır. Türkiye’de rüzgar enerjisi santrallerinin elektrik üretimindeki payı (2021 ilk yarısından itibari ile rüzgar gücü 10,585 MW ile) tüm ihtiyacın %9,22’sini karşılar hale gelmiştir. Ülkemizde son dönemde Rüzgar Elektrik Santralleri (RES) lisans başvurularında önemli artışlar yaşanmış olup, bu santrallerin enterkonnekte sisteme bağlantı kriterleri ve sistem işletmeciliği üzerindeki etkileri daha büyük önem kazanmıştır. Rüzgar türbinlerinin zaman içinde ürettiği güç, birincil enerji kaynaklarının öngörülemeyen doğası nedeniyle karakteristik olarak dengesizdir. Bu durum, yalnızca çok sayıda rüzgar türbininin elektrik güç şebekesine entegrasyonundaki sorunları artırarak, katkılarının yönetilmesini oldukça zorlaştırmaktadır. Önceleri dağıtım sistemine bağlanan RES’lerde sadece gerilim kalitesi ilk aranan durumken şimdiki değişen yönetmeliğe göre RES’lerden güç sisteminin dengesi konusunda katkı yapması beklenmektedir. RES’lerin arıza sonrası sisteme katkısı, gerilim, frekans etkileri ve aktif güç kontrolü özellikleri belirlenerek Elektrik Piyasası Şebeke Yönetmeliğinde gerekli düzenlemelere gidilmiştir. Bu makale, rüzgar enerjisinin güç sistemlerine entegrasyonu ile ilgili temel teknik zorlukları ve önerilen çözüm metodolojilerini incelemeyi amaçlamaktadır. Bu zorluklar arasında güç kalitesi sorunları, güç dengesizlikleri (şebeke kararlılığı), reaktif güç desteği, arızadan kurtulma yeteneği gözden geçirilmiştir ve tüm zorluklar tartışılmıştır. Rüzgar enerji santrallerinin artan güçlerle enerji sistemine entegrasyonu Türkiye Elektrik İletim Sistemine etkileri ve bağlanma kriterleri gözden geçirilmiştir. Entegrasyon zorluklarını azaltmak için enerji depolama sistemleri, şebeke kodları ve yenilebilir enerji politikaları önemine değinilmiştir. Böylece, politika yapıcılar ve araştırmacılar bu çalışmayı gelecekteki enerji stratejilerini geliştirmede ve rüzgar enerjisi entegrasyon zorluklarının tam anlamıyla görmelerine yardımcı olacaktır.

Teşekkür

Araştırmamın uygulama aşamasında yardımlarını esirgemeyen ve her daim destekleyen değerli hocalarım Prof. Dr. Engin ÖZDEMİR’ e ve Dr. Kadir YILMAZ’ a şükranlarımı sunmayı bir borç bilirim.

Kaynakça

  • [1] Türkiye Rüzgar Enerjisi Istatistik Raporu. 2021. Türkiye Rüzgar Enerjisi Birliği (TÜREB).
  • [2] Wu Y.H., Chang S.M. and Mandal P., 2019. Grid-connected wind power plants: a survey on the ıntegration requirements in modern grid codes. IEEE (Institute of Electrical and Electronics Engineers), 55 (5).
  • [3] Ahuja H., Bhuvaneswari G., Balasubramanian R., 2011. Performance comparison of dfıg and pmsg based wecs. IET Conference on Renewable Power Generation, New Delhi, India.
  • [4] Shakır R.A., Fahad S.M.I, Fahad A.Al-Sulaman, Ibrahim M.E., 2020. Grid Integration Challenges of Wind Energy: A Review, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia, January 8, 10857–10870.
  • [5] Tsili, M., Patsiouras, S., Papathanassiou, S., 2008. “A review of grid code technical requirements for wind farms”, IET Renewable Power Generation, 2:271- 273, 31 July 2008, Denmark
  • [6] Ak M. A., 2011. Rüzgâr santrallerinin şebekeye entegrasyonu ve şebeke üzerine etkileri. Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [7] Singh M. and Santoso S., 2011. Dynamic models for wind turbines and wind power plants. Nat. Renew. Energy Lab., Golden, CO, USA, Tech. Rep. NREL/SR-5500-52780, XEE-8-77567-01; TRN: US201124%%377, 2011
  • [8] Wind Turbine Plant Capabilities Report, 2013. WindIntegration Studies, Austral. Energy Market Operator, Melbourne, VIC, Australia,
  • [9] Khadem S.K., Basu M., Conlon M.F., 2010, Power Quality in Grid connected Renewable Energy Systems: Role of Custom Power Devices, Dublin Institute of Technology Kevin Street, Dublin 8, Ireland, International Conference on Renewable Energies and Power Quality, March, III
  • [10] Blaabjerg F., Teodorescu R., Liserre M, Timbus A. V., 2006. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Trns Indust Elect, 53 (5), 1398 – 1409.
  • [11] Dehghan S.M., Mohamadian M., and Varjani A.Y., 2009. A New Variable-Speed Wind Energy Conversion System Using Permanent Magnet Synchronous Generator and Z-Source Inverter, IEEE Trns Energy Conv, 24 (3), 714 – 724.
  • [12] Chowdhury S.P., CShowdhury A., Crossleyb P.A., 2009. Islanding protection of active distribution networks with renewable distributed generators: A comprehensive survey. Electric Power Systems Research, 79, 984–992.
  • [13] Giebel G. and Kariniotakis G., 2017. Wind power forecasting a review of the state of the art. In Renewable Energy Forecasting. Amsterdam, The Netherlands: Elsevier, 2017, 59–109, doi: 10.1016/b978-0-08- 100504-0.00003-2.
  • [14] Rona B, 2014. Rüzgâr santrallerinin güç sistemlerine entegrasyonu ve şebeke yönetmeliğine göre analizi. Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Enerji Enstitüsü, İstanbul.
  • [15] Zhang Q. Li, Y., Lin T. Ji, X. and Cai Z., 2018. Volt/Var control for power grids with connections of large-scale wind farms: A review. IEEE Access, 6, 26675–26692, doi: 10.1109.
  • [16] Xie, Z. Xu, L. Yang, J. Ostergaard, Y. Xue, and K. P. Wong, 2013. A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support. IEEE Trans. Power Syst., 28 (3), 3302–3310,Aug., doi: 10.11.09
  • [17] Zhou Y., Nguyen D. D., Kjaer P. C., and Saylors S., 2013. Connecting wind power plant with weak grid - Challenges and solutions. in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. doi: 10.1109.
  • [18] Liu J., Yao W., Wen J., Fang J., Jiang L., He H., and Cheng S., 2020. Impact of power grid strength and PLL parameters on stability of gridconnected DFIG wind farm, IEEE Trans. Sustain. Energy, 11 (1), 545–557, Jan. 2020, doi: 10.1109
  • [19] Kroposki B., 2017. Integrating high levels of variable renewable energy into electric power systems, J. Mod. Power Syst. Clean Energy, 5 (6), 831–837, Nov. doi: 10.1007.
  • [20] Morren J., De Haan S., Kling W., and Ferreira J., 2006. Wind turbines emulating inertia and supporting primary frequency control, IEEE Trans. Power Syst., 21 (1), 433–434, Feb. doi: 10.1109.
  • [21] Y. Wang, J. Meng, X. Zhang, and L. Xu, 2015. Control of PMSG-based wind turbines for system inertial response and power oscillation damping. IEEE Trans. Sustain. Energy,6 (2), 565–574, Apr., doi: 10.1109/tste.2015.2394363.
  • [22] Schwanz D., Bollen M., and Larsson A., 2018. Some methods for harmonic emission determination in wind power plants. In Proc. IEEE 18th Int. Conf. Harmon. Qual. Power (ICHQP), May, doi: 10.1109.
  • [23] Reis A., Moura L. P., and Oliveira J. C., 2016. Mitigation of harmonic current produced by wind turbine throughout converter switching controll. In Proc. 17th Int. Conf. Harmon. Qual. Power (ICHQP), Oct. 2016, doi: 10.1109/ichqp.2016.7783477.
  • [24] U. Vargas and A. Ramirez, 2016. Extended harmonic domain model of a wind turbine generator for harmonic transient analysis. IEEE Trans. Power Del., 31, (3), 1360–1368, Jun., doi: 10.1109.
  • [25] Kundur P., 2007. Power system stability. in Power System Stability and Control. Boca Raton, FL, USA: CRC Press, 1–10. [Online]. Available: https://app.dimensions.ai/details/publication/pub.1004391169, doi: 10.1201/9781420009248.
  • [26] Gautam D., Vittal V., and Harbour T., 2009. Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems. IEEE Trans. Power Syst., 24 (3), 1426–1434, Aug., doi: 10.1109.
  • [27] Sun Y., Zhang Z., Li G., and Lin J., 2010. Review on Frequency Control of Power Systems with Wind Power Penetration. In Power System Technology, 1–8.
  • [28] Le H. T., Santoso S., and Nguyen T. Q., 2012. Augmenting Wind Power Penetration and Grid Voltage Stability Limits Using ESS: Application Design, Sizing, and a Case Study. IEEE Trans. Power Syst., 27 (1), 161–171.
  • [29] Various Authors, 2015. Commercialisation of Energy Storage in Europe.
  • [30] NERC. Essential-Reliability-Services-Task-Force-(ERSTF). 2019. Accessed: Oct. 9, [Online]. Available:https://www.nerc.com/comm/Other/Pages/Essential-Reliability-Services-Task-Force- (ERSTF).aspx.
  • [31] DEIF. LVRT—Low Voltage Ride Through: Wind Power. Accessed: Oct. 9, 2019. [Online]. Available: https://www.deif.com/wind-power/technology/lvrt—low -voltage-ride-through.
  • [32] Milligan M., 2018. Sources of grid reliability services. Electr. J., 31 (9), 1–7, Nov, doi: 10.1016/j.tej.2018.10.002.
  • [33] Malekian K., Shirvani A., Schmidt U., and. Schufft W., 2009. Detailed modeling of wind power plants incorporating variable-speed Synchronous Generator. In Proc. IEEE Elect. Power Energy Conf. (EPEC), Oct., doi: 10.1109/epec.2009.5420926.
  • [34] Muljadi E., Zhang Y. C., Gevorgian V., and Kosterev D., 2016. Understanding dynamic model validation of a wind turbine generator and a wind power plant. In Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Sep., doi: 10.1109.
  • [35] Camm et al. E. H., 2009. Characteristics of wind turbine generators for wind power plants. In Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. 2009, doi: 10.1109/pes.2009.5275330.
  • [36] Telukunta V. Pradhan J., Agrawal A., Singh M. and Srivani S. G., 2017. Protection challenges under bulk penetration of renewable energy resources in power systems: A review. CSEE J. Power Energy Syst., 3 (4), 365–379, Dec., doi: 10.17775.
  • [37] Piesciorovsky E.C., and Schulz N. N., 2017. Comparison of programmable logic and setting group methods for adaptive overcurrent protection in microgrids. Electr. Power Syst. Res., 151, 273–282, Oct., doi: 10.1016/j.epsr.2017.05.035.
  • [38] Zhang L., Tai N., Huang W., and Wang Y., 2019. Fault distance estimationbased protection scheme for DC microgrids. J. Eng., 2019 (16), 1199–1203, Mar., doi: 10.1049.
  • [39] Abdali A., Noroozian R, and Mazlumi K., 2019. Simultaneous control and protection schemes for DC multi microgrids systems. Int. J. Elect. Power Energy Syst., 104, 230–245, Jan., doi: 10.1016.
  • [40] Zamani M. A., Sidhu T. S., and Yazdani A., 2011. A protection strategy and microprocessor-based relay for low-voltage microgrids. IEEE Trans. Power Del., 26 (3), 1873–1883, Jul., doi: 10.1109.
  • [41] Mohanty R. and Pradhan A. K., 2019. DC ring bus microgrid protection using the oscillation frequency and transient power. IEEE Syst. J., 13 (1), 875–884, Mar., doi: 10.1109.
  • [42] Singh M. and Agrawal A., 2019. Voltage–current–time inverse-based protection coordination of photovoltaic power systems. IET Gener.Transmiss. Distrib. 13 (6), 794–804, Mar, doi: 10.1049/ietgtd.2018.6143..
  • [43] Eltigani D. and Masri S., 2015. Challenges of integrating renewable energy sources to smart grids: A review. Renew. Sustain. Energy Rev., 52, 770–780, Dec., doi: 10.1016/j.rser.2015.07.140.
  • [44] Mahela O.P., Gupta N., Khosravy M, and Patel N., 2019. Comprehensive overview of low voltage ride through methods of grid integrated wind generator. IEEE Access, 7, 99299–99326, doi: 10.1109/access.2019.2930413.
  • [45] Glover J. D., Sarma M. S., and Overbye T., 2012. Power System Analysis & Design, SI Version. Boston, MA, USA: Cengage Learning.
  • [46] Deng X. and Lv T., 2020. Power system planning with increasing variable renewable energy: A review of optimization models. J. Cleaner Prod., 246, Feb., Art. no. 118962, doi: 10.1016/ j.jclepro.2019.118962.
  • [47] Ringkjøb H. K., Haugan P. M., and Solbrekke I. M, 2018. A review of modelling tools for energy and electricity systems with large shares of variable renewable. Renew. Sustain. Energy Rev., 96, 440–459, Nov, doi: 10.1016/j.rser.2018.08.002.
  • [48] Zhou S., Wang Y., Zhou Y., Clarke L. E., and Edmonds J. A., 2018. Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints. Appl. Energy, 213, 22–30, Mar., doi: 10.1016.
  • [49] Rong S., Chen X., Guan W., and Xu M., 2019. Coordinated dispatching strategy of multiple energy sources for wind power consumption. J. Mod. Power Syst. Clean Energy, 7 (6), 1461–1471, Nov., doi: 10.1007/s40565-019-0540-7.
  • [50] Scott I. J., Carvalho P. M., Botterud A., and Silva C. A., 2019. Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage Appl. Energy, 253, Nov., Art. no. 113603, doi: 10.1016/ j.apenergy.2019.113603.
  • [51] Vargas L. S., Bustos-Turu G., and Larrain F., 2015. Wind power curtailment and energy storage in transmission congestion management considering power plants ramp rates. In Proc. IEEE Power Energy Soc. Gen. Meeting, Jul., doi: 10.1109/pesgm.2015.7285712.
  • [52] Bird L., Cochran J., and Wang X., 2014. Wind and solar energy curtailment: Experience and practices in the United States. Nat. Renew. Energy Lab., Golden, CO, USA, Tech. Rep. NREL/TP-6A20-60983, Mar., doi: 10.2172/1126842.
  • [53] Nourian A. and Madnick S., 2018. A systems theoretic approach to the security threats in cyber physical systems applied to stuxnet. IEEE Trans. Dependable Secure Comput., 15 (1), 2–13, Jan., doi: 10.1109/tdsc.2015.2509994.
  • [54] Lai J., Duan B., Su Y., Li L, and Yin Q., 2017. An active security defense strategy for wind farm based on automated decision. in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul., doi: 10.1109.
  • [55] Abhinav R. and Pindoriya N. M., 2018. Opportunities and key challenges for wind energy trading with high penetration in Indian power market. Energy for Sustain. Develop. 47, 53–61, Dec., doi: 10.1016/j.esd.2018.08.007.
  • [56] Li S., and Park C. S., 2018. Wind power bidding strategy in the short-term electricity market. Energy Econ., 75, 336–344, Sep., doi: 10.1016/j.eneco.2018.08.029.
  • [57] Aquila G., Rotela Junior P., De Oliveira Pamplona E., and De Queiroz A. R., 2017. Wind power feasibility analysis under uncertainty in the Brazilian electricity market. Energy Econ., 65, 127–136, Jun., doi: 10.1016/j.eneco.2017.04.027.
  • [58] Sorknæs P., Djørup S. R., Lund H., and Thellufsen J. Z., 2019. Quantifying the influence of wind power and photovoltaic on future electricity market prices. Energy Convers. Manage. 180, 312–324, Jan., doi: 10.1016/j.enconman.2018.11.007.
  • [59] S. Heieder, 2001, “Grid integration of wind energy converters and wind field applıcatıons,” 1.Rüzgâr Sempozyumu, İzmir.
  • [60] Koç E., ve Güven A. N., 2010. Modeling and investigation of fault ride through capability of variable speed wind turbines. In National Conference on Electrical, Electronics and Computer Engineering, IEEE, 22-26.
  • [61] Elektrik şebeke yönetmeliğinde değişiklik yapılmasına dair yönetmelik, T.C. Resmi Gazete 2013. Sayı: 28517, Ocak.
  • [62] Tang X., Yin M., Shen C., Xu Y., Dong Z. Y., ve Zou X., 2018. Active power control of wind turbine generators via coordinated rotor speed and pitch angle regulation. IEEE Transactions on Sustainable Energy, 10 (2), 822-832.
  • [63] Tur M. R., 2019. Grid Code Requirements of Wind Power, Integration Problems and Solutions. In VII. Umteb Internatıonal Congress on Vocational & technical sciences, 42.
  • [64] Larcher D. and Tarascon J. M., 2015. Towards greener and more sustainable batteries for electrical energy storage. Nature Chem, 7 (1), 19–29, Jan., doi: 10.1038/nchem.2085.
  • [65] Wu J., Zhang B., Li H., Li Z., Chen Y., and Miao X., 2014. Statistical distribution for wind power forecast error and its application to determine optimal size of energy storage system. Int. J. Elect. Power Energy Syst., 55, 100–107, Feb., Mdoi: 10.1016.
  • [66] Shi J., Wang L., Lee W. J., Cheng X., and Zong X., 2019. Hybrid Energy Storage System optimization enabling very short-term wind power generation scheduling based on output feature extraction. Appl. Energy, 256, Art. no. 113915, doi: 10.1016/ j.apenergy. 2019.113915.
  • [67] Xie L., Carvalho P. M. S., Ferreira L. A. F. M., Liu J., Krogh B. H., Popli N., and Ilić M. D., 2011. Wind integration in power systems: Operational challenges and possible solutions. Proc. IEEE, 99 (1), 214–232, doi:10.1109/jproc.2010.2070051.
  • [68] Abdullah M., Yatim A., Tan C., and Saidur R., 2012. A review of maximum power point tracking algorithms for wind energy systems. Renew. Sustain. Energy Rev., 16 (5) 3220–3227, Jun., doi: 10.1016/j.rser.2012.02.016.
  • [69] Lasheen A. and Elshafei A. L., 2016. Wind-turbine collective-pitch control via a fuzzy predictive algorithm. Renew. Energy, 87, 298–306, Mar, doi: 10.1016/j.renene.2015.10.030.
  • [70] Attya A., Dominguez-Garcia J., and Anaya-Lara O., 2018. A review on frequency support provision by wind power plants: Current and future challenges. Renew. Sustain. Energy Rev., 81, 2071–2087, Jan., doi: 10.1016/j.rser.2017.06.016.
  • [71] Weng Y. T., and Hsu Y. Y., 2016. Reactive power control strategy for a wind farm with DFIG. Renew. Energy, 94, 383–390, Aug., doi: 10.1016/j.renene.2016.03.072.
  • [72] Komusanac I., Fraile D., and Brindley G., 2019. Wind Energy in Europe in 2018 Trends and Statistics. Brussels, Belgium: WindEurope, Feb.
  • [73] World’s Top 10 Countries in Wind Energy Capacity—ET Energy World, 2019.
  • [74] Beijing, China. 2018. Interim Administrative Measures for the Development and Construction of Decentralized Wind Power Projects. [Online]. Available: http://zfxxgk.nea.gov.cn/auto87/201804/ t20180416_3150.htm.
  • [75] S. Singer, 2017. Tribal energy program for California Indian Tribes. Lawrence Livermore Nat. Lab., Livermore, CA, USA, Tech. Rep. LLNL-TR-723042, Feb., doi: 10.2172/1343849.
  • [76] The Iea/Irena Renewable Policies and Measures Database, 2019. [Online]. Available: https://www.iea.org/policiesandmeasures/renewable energy.
  • [77] Wind Energy Division, 2018. National wind-solar hybrid policy,’’ Ministry New Renew. Energy, 238–278 (238), 1–8.
  • [78] Ministry of Industry of Tourism and Commerce, 2013. Feed-in tariffs for electricity from renewable energy sources, 1–66.
Yıl 2022, Cilt: 5 Sayı: 2, 50 - 65, 31.12.2022
https://doi.org/10.53410/koufbd.1096254

Öz

Kaynakça

  • [1] Türkiye Rüzgar Enerjisi Istatistik Raporu. 2021. Türkiye Rüzgar Enerjisi Birliği (TÜREB).
  • [2] Wu Y.H., Chang S.M. and Mandal P., 2019. Grid-connected wind power plants: a survey on the ıntegration requirements in modern grid codes. IEEE (Institute of Electrical and Electronics Engineers), 55 (5).
  • [3] Ahuja H., Bhuvaneswari G., Balasubramanian R., 2011. Performance comparison of dfıg and pmsg based wecs. IET Conference on Renewable Power Generation, New Delhi, India.
  • [4] Shakır R.A., Fahad S.M.I, Fahad A.Al-Sulaman, Ibrahim M.E., 2020. Grid Integration Challenges of Wind Energy: A Review, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia, January 8, 10857–10870.
  • [5] Tsili, M., Patsiouras, S., Papathanassiou, S., 2008. “A review of grid code technical requirements for wind farms”, IET Renewable Power Generation, 2:271- 273, 31 July 2008, Denmark
  • [6] Ak M. A., 2011. Rüzgâr santrallerinin şebekeye entegrasyonu ve şebeke üzerine etkileri. Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [7] Singh M. and Santoso S., 2011. Dynamic models for wind turbines and wind power plants. Nat. Renew. Energy Lab., Golden, CO, USA, Tech. Rep. NREL/SR-5500-52780, XEE-8-77567-01; TRN: US201124%%377, 2011
  • [8] Wind Turbine Plant Capabilities Report, 2013. WindIntegration Studies, Austral. Energy Market Operator, Melbourne, VIC, Australia,
  • [9] Khadem S.K., Basu M., Conlon M.F., 2010, Power Quality in Grid connected Renewable Energy Systems: Role of Custom Power Devices, Dublin Institute of Technology Kevin Street, Dublin 8, Ireland, International Conference on Renewable Energies and Power Quality, March, III
  • [10] Blaabjerg F., Teodorescu R., Liserre M, Timbus A. V., 2006. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Trns Indust Elect, 53 (5), 1398 – 1409.
  • [11] Dehghan S.M., Mohamadian M., and Varjani A.Y., 2009. A New Variable-Speed Wind Energy Conversion System Using Permanent Magnet Synchronous Generator and Z-Source Inverter, IEEE Trns Energy Conv, 24 (3), 714 – 724.
  • [12] Chowdhury S.P., CShowdhury A., Crossleyb P.A., 2009. Islanding protection of active distribution networks with renewable distributed generators: A comprehensive survey. Electric Power Systems Research, 79, 984–992.
  • [13] Giebel G. and Kariniotakis G., 2017. Wind power forecasting a review of the state of the art. In Renewable Energy Forecasting. Amsterdam, The Netherlands: Elsevier, 2017, 59–109, doi: 10.1016/b978-0-08- 100504-0.00003-2.
  • [14] Rona B, 2014. Rüzgâr santrallerinin güç sistemlerine entegrasyonu ve şebeke yönetmeliğine göre analizi. Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Enerji Enstitüsü, İstanbul.
  • [15] Zhang Q. Li, Y., Lin T. Ji, X. and Cai Z., 2018. Volt/Var control for power grids with connections of large-scale wind farms: A review. IEEE Access, 6, 26675–26692, doi: 10.1109.
  • [16] Xie, Z. Xu, L. Yang, J. Ostergaard, Y. Xue, and K. P. Wong, 2013. A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support. IEEE Trans. Power Syst., 28 (3), 3302–3310,Aug., doi: 10.11.09
  • [17] Zhou Y., Nguyen D. D., Kjaer P. C., and Saylors S., 2013. Connecting wind power plant with weak grid - Challenges and solutions. in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. doi: 10.1109.
  • [18] Liu J., Yao W., Wen J., Fang J., Jiang L., He H., and Cheng S., 2020. Impact of power grid strength and PLL parameters on stability of gridconnected DFIG wind farm, IEEE Trans. Sustain. Energy, 11 (1), 545–557, Jan. 2020, doi: 10.1109
  • [19] Kroposki B., 2017. Integrating high levels of variable renewable energy into electric power systems, J. Mod. Power Syst. Clean Energy, 5 (6), 831–837, Nov. doi: 10.1007.
  • [20] Morren J., De Haan S., Kling W., and Ferreira J., 2006. Wind turbines emulating inertia and supporting primary frequency control, IEEE Trans. Power Syst., 21 (1), 433–434, Feb. doi: 10.1109.
  • [21] Y. Wang, J. Meng, X. Zhang, and L. Xu, 2015. Control of PMSG-based wind turbines for system inertial response and power oscillation damping. IEEE Trans. Sustain. Energy,6 (2), 565–574, Apr., doi: 10.1109/tste.2015.2394363.
  • [22] Schwanz D., Bollen M., and Larsson A., 2018. Some methods for harmonic emission determination in wind power plants. In Proc. IEEE 18th Int. Conf. Harmon. Qual. Power (ICHQP), May, doi: 10.1109.
  • [23] Reis A., Moura L. P., and Oliveira J. C., 2016. Mitigation of harmonic current produced by wind turbine throughout converter switching controll. In Proc. 17th Int. Conf. Harmon. Qual. Power (ICHQP), Oct. 2016, doi: 10.1109/ichqp.2016.7783477.
  • [24] U. Vargas and A. Ramirez, 2016. Extended harmonic domain model of a wind turbine generator for harmonic transient analysis. IEEE Trans. Power Del., 31, (3), 1360–1368, Jun., doi: 10.1109.
  • [25] Kundur P., 2007. Power system stability. in Power System Stability and Control. Boca Raton, FL, USA: CRC Press, 1–10. [Online]. Available: https://app.dimensions.ai/details/publication/pub.1004391169, doi: 10.1201/9781420009248.
  • [26] Gautam D., Vittal V., and Harbour T., 2009. Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems. IEEE Trans. Power Syst., 24 (3), 1426–1434, Aug., doi: 10.1109.
  • [27] Sun Y., Zhang Z., Li G., and Lin J., 2010. Review on Frequency Control of Power Systems with Wind Power Penetration. In Power System Technology, 1–8.
  • [28] Le H. T., Santoso S., and Nguyen T. Q., 2012. Augmenting Wind Power Penetration and Grid Voltage Stability Limits Using ESS: Application Design, Sizing, and a Case Study. IEEE Trans. Power Syst., 27 (1), 161–171.
  • [29] Various Authors, 2015. Commercialisation of Energy Storage in Europe.
  • [30] NERC. Essential-Reliability-Services-Task-Force-(ERSTF). 2019. Accessed: Oct. 9, [Online]. Available:https://www.nerc.com/comm/Other/Pages/Essential-Reliability-Services-Task-Force- (ERSTF).aspx.
  • [31] DEIF. LVRT—Low Voltage Ride Through: Wind Power. Accessed: Oct. 9, 2019. [Online]. Available: https://www.deif.com/wind-power/technology/lvrt—low -voltage-ride-through.
  • [32] Milligan M., 2018. Sources of grid reliability services. Electr. J., 31 (9), 1–7, Nov, doi: 10.1016/j.tej.2018.10.002.
  • [33] Malekian K., Shirvani A., Schmidt U., and. Schufft W., 2009. Detailed modeling of wind power plants incorporating variable-speed Synchronous Generator. In Proc. IEEE Elect. Power Energy Conf. (EPEC), Oct., doi: 10.1109/epec.2009.5420926.
  • [34] Muljadi E., Zhang Y. C., Gevorgian V., and Kosterev D., 2016. Understanding dynamic model validation of a wind turbine generator and a wind power plant. In Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Sep., doi: 10.1109.
  • [35] Camm et al. E. H., 2009. Characteristics of wind turbine generators for wind power plants. In Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. 2009, doi: 10.1109/pes.2009.5275330.
  • [36] Telukunta V. Pradhan J., Agrawal A., Singh M. and Srivani S. G., 2017. Protection challenges under bulk penetration of renewable energy resources in power systems: A review. CSEE J. Power Energy Syst., 3 (4), 365–379, Dec., doi: 10.17775.
  • [37] Piesciorovsky E.C., and Schulz N. N., 2017. Comparison of programmable logic and setting group methods for adaptive overcurrent protection in microgrids. Electr. Power Syst. Res., 151, 273–282, Oct., doi: 10.1016/j.epsr.2017.05.035.
  • [38] Zhang L., Tai N., Huang W., and Wang Y., 2019. Fault distance estimationbased protection scheme for DC microgrids. J. Eng., 2019 (16), 1199–1203, Mar., doi: 10.1049.
  • [39] Abdali A., Noroozian R, and Mazlumi K., 2019. Simultaneous control and protection schemes for DC multi microgrids systems. Int. J. Elect. Power Energy Syst., 104, 230–245, Jan., doi: 10.1016.
  • [40] Zamani M. A., Sidhu T. S., and Yazdani A., 2011. A protection strategy and microprocessor-based relay for low-voltage microgrids. IEEE Trans. Power Del., 26 (3), 1873–1883, Jul., doi: 10.1109.
  • [41] Mohanty R. and Pradhan A. K., 2019. DC ring bus microgrid protection using the oscillation frequency and transient power. IEEE Syst. J., 13 (1), 875–884, Mar., doi: 10.1109.
  • [42] Singh M. and Agrawal A., 2019. Voltage–current–time inverse-based protection coordination of photovoltaic power systems. IET Gener.Transmiss. Distrib. 13 (6), 794–804, Mar, doi: 10.1049/ietgtd.2018.6143..
  • [43] Eltigani D. and Masri S., 2015. Challenges of integrating renewable energy sources to smart grids: A review. Renew. Sustain. Energy Rev., 52, 770–780, Dec., doi: 10.1016/j.rser.2015.07.140.
  • [44] Mahela O.P., Gupta N., Khosravy M, and Patel N., 2019. Comprehensive overview of low voltage ride through methods of grid integrated wind generator. IEEE Access, 7, 99299–99326, doi: 10.1109/access.2019.2930413.
  • [45] Glover J. D., Sarma M. S., and Overbye T., 2012. Power System Analysis & Design, SI Version. Boston, MA, USA: Cengage Learning.
  • [46] Deng X. and Lv T., 2020. Power system planning with increasing variable renewable energy: A review of optimization models. J. Cleaner Prod., 246, Feb., Art. no. 118962, doi: 10.1016/ j.jclepro.2019.118962.
  • [47] Ringkjøb H. K., Haugan P. M., and Solbrekke I. M, 2018. A review of modelling tools for energy and electricity systems with large shares of variable renewable. Renew. Sustain. Energy Rev., 96, 440–459, Nov, doi: 10.1016/j.rser.2018.08.002.
  • [48] Zhou S., Wang Y., Zhou Y., Clarke L. E., and Edmonds J. A., 2018. Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints. Appl. Energy, 213, 22–30, Mar., doi: 10.1016.
  • [49] Rong S., Chen X., Guan W., and Xu M., 2019. Coordinated dispatching strategy of multiple energy sources for wind power consumption. J. Mod. Power Syst. Clean Energy, 7 (6), 1461–1471, Nov., doi: 10.1007/s40565-019-0540-7.
  • [50] Scott I. J., Carvalho P. M., Botterud A., and Silva C. A., 2019. Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage Appl. Energy, 253, Nov., Art. no. 113603, doi: 10.1016/ j.apenergy.2019.113603.
  • [51] Vargas L. S., Bustos-Turu G., and Larrain F., 2015. Wind power curtailment and energy storage in transmission congestion management considering power plants ramp rates. In Proc. IEEE Power Energy Soc. Gen. Meeting, Jul., doi: 10.1109/pesgm.2015.7285712.
  • [52] Bird L., Cochran J., and Wang X., 2014. Wind and solar energy curtailment: Experience and practices in the United States. Nat. Renew. Energy Lab., Golden, CO, USA, Tech. Rep. NREL/TP-6A20-60983, Mar., doi: 10.2172/1126842.
  • [53] Nourian A. and Madnick S., 2018. A systems theoretic approach to the security threats in cyber physical systems applied to stuxnet. IEEE Trans. Dependable Secure Comput., 15 (1), 2–13, Jan., doi: 10.1109/tdsc.2015.2509994.
  • [54] Lai J., Duan B., Su Y., Li L, and Yin Q., 2017. An active security defense strategy for wind farm based on automated decision. in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul., doi: 10.1109.
  • [55] Abhinav R. and Pindoriya N. M., 2018. Opportunities and key challenges for wind energy trading with high penetration in Indian power market. Energy for Sustain. Develop. 47, 53–61, Dec., doi: 10.1016/j.esd.2018.08.007.
  • [56] Li S., and Park C. S., 2018. Wind power bidding strategy in the short-term electricity market. Energy Econ., 75, 336–344, Sep., doi: 10.1016/j.eneco.2018.08.029.
  • [57] Aquila G., Rotela Junior P., De Oliveira Pamplona E., and De Queiroz A. R., 2017. Wind power feasibility analysis under uncertainty in the Brazilian electricity market. Energy Econ., 65, 127–136, Jun., doi: 10.1016/j.eneco.2017.04.027.
  • [58] Sorknæs P., Djørup S. R., Lund H., and Thellufsen J. Z., 2019. Quantifying the influence of wind power and photovoltaic on future electricity market prices. Energy Convers. Manage. 180, 312–324, Jan., doi: 10.1016/j.enconman.2018.11.007.
  • [59] S. Heieder, 2001, “Grid integration of wind energy converters and wind field applıcatıons,” 1.Rüzgâr Sempozyumu, İzmir.
  • [60] Koç E., ve Güven A. N., 2010. Modeling and investigation of fault ride through capability of variable speed wind turbines. In National Conference on Electrical, Electronics and Computer Engineering, IEEE, 22-26.
  • [61] Elektrik şebeke yönetmeliğinde değişiklik yapılmasına dair yönetmelik, T.C. Resmi Gazete 2013. Sayı: 28517, Ocak.
  • [62] Tang X., Yin M., Shen C., Xu Y., Dong Z. Y., ve Zou X., 2018. Active power control of wind turbine generators via coordinated rotor speed and pitch angle regulation. IEEE Transactions on Sustainable Energy, 10 (2), 822-832.
  • [63] Tur M. R., 2019. Grid Code Requirements of Wind Power, Integration Problems and Solutions. In VII. Umteb Internatıonal Congress on Vocational & technical sciences, 42.
  • [64] Larcher D. and Tarascon J. M., 2015. Towards greener and more sustainable batteries for electrical energy storage. Nature Chem, 7 (1), 19–29, Jan., doi: 10.1038/nchem.2085.
  • [65] Wu J., Zhang B., Li H., Li Z., Chen Y., and Miao X., 2014. Statistical distribution for wind power forecast error and its application to determine optimal size of energy storage system. Int. J. Elect. Power Energy Syst., 55, 100–107, Feb., Mdoi: 10.1016.
  • [66] Shi J., Wang L., Lee W. J., Cheng X., and Zong X., 2019. Hybrid Energy Storage System optimization enabling very short-term wind power generation scheduling based on output feature extraction. Appl. Energy, 256, Art. no. 113915, doi: 10.1016/ j.apenergy. 2019.113915.
  • [67] Xie L., Carvalho P. M. S., Ferreira L. A. F. M., Liu J., Krogh B. H., Popli N., and Ilić M. D., 2011. Wind integration in power systems: Operational challenges and possible solutions. Proc. IEEE, 99 (1), 214–232, doi:10.1109/jproc.2010.2070051.
  • [68] Abdullah M., Yatim A., Tan C., and Saidur R., 2012. A review of maximum power point tracking algorithms for wind energy systems. Renew. Sustain. Energy Rev., 16 (5) 3220–3227, Jun., doi: 10.1016/j.rser.2012.02.016.
  • [69] Lasheen A. and Elshafei A. L., 2016. Wind-turbine collective-pitch control via a fuzzy predictive algorithm. Renew. Energy, 87, 298–306, Mar, doi: 10.1016/j.renene.2015.10.030.
  • [70] Attya A., Dominguez-Garcia J., and Anaya-Lara O., 2018. A review on frequency support provision by wind power plants: Current and future challenges. Renew. Sustain. Energy Rev., 81, 2071–2087, Jan., doi: 10.1016/j.rser.2017.06.016.
  • [71] Weng Y. T., and Hsu Y. Y., 2016. Reactive power control strategy for a wind farm with DFIG. Renew. Energy, 94, 383–390, Aug., doi: 10.1016/j.renene.2016.03.072.
  • [72] Komusanac I., Fraile D., and Brindley G., 2019. Wind Energy in Europe in 2018 Trends and Statistics. Brussels, Belgium: WindEurope, Feb.
  • [73] World’s Top 10 Countries in Wind Energy Capacity—ET Energy World, 2019.
  • [74] Beijing, China. 2018. Interim Administrative Measures for the Development and Construction of Decentralized Wind Power Projects. [Online]. Available: http://zfxxgk.nea.gov.cn/auto87/201804/ t20180416_3150.htm.
  • [75] S. Singer, 2017. Tribal energy program for California Indian Tribes. Lawrence Livermore Nat. Lab., Livermore, CA, USA, Tech. Rep. LLNL-TR-723042, Feb., doi: 10.2172/1343849.
  • [76] The Iea/Irena Renewable Policies and Measures Database, 2019. [Online]. Available: https://www.iea.org/policiesandmeasures/renewable energy.
  • [77] Wind Energy Division, 2018. National wind-solar hybrid policy,’’ Ministry New Renew. Energy, 238–278 (238), 1–8.
  • [78] Ministry of Industry of Tourism and Commerce, 2013. Feed-in tariffs for electricity from renewable energy sources, 1–66.
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Makaleler
Yazarlar

Emine Amal 0000-0002-3381-2836

Kadir Yılmaz 0000-0002-0819-3420

Engin Özdemir 0000-0003-0882-332X

Erken Görünüm Tarihi 27 Aralık 2022
Yayımlanma Tarihi 31 Aralık 2022
Kabul Tarihi 3 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Amal, E., Yılmaz, K., & Özdemir, E. (2022). Rüzgar Enerji Santrallerinin Elektrik Şebekesine Etkilerinin İncelenmesi. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 5(2), 50-65. https://doi.org/10.53410/koufbd.1096254