Araştırma Makalesi
BibTex RIS Kaynak Göster

Tavuk ve Rat Karaciğerinde Yağ ve Karbonhidrat Metabolizmalarının Karşılaştırılması

Yıl 2022, Cilt: 15 Sayı: 1, 15 - 28, 31.03.2022
https://doi.org/10.30607/kvj.939149

Öz

Bu çalışmanın amacı, tavuklarda ve ratlarda doğum öncesi ve erişkin dönem karaciğer karbonhidrat ve yağ metabolizması arasındaki histolojik farklılıkları ortaya koymaktır. Çalışmada, Wistar albino türü 30 adet rat ile 30 adet Ross ırkı broiler tavuk kullanıldı. Ratların ve tavukların her biri 10’ arlı gruplara ayrıldı. Bu gruplar erişkin, 14 günlük ve 18 günlük fötuslar halinde düzenlendiler. Bu çalışmada, rat ve tavuk karaciğerindeki yağ ve karbonhidrat metabolizmaları histolojik yöntemlerle incelenmiş, erişkin ve fetal dönemlerdeki değişimler karşılaştırmalı olarak değerlendirilmiştir. Karaciğer karbonhidrat birikiminin ışık mikroskobik incelemelerinde, Erişkin dönem ratlar ile tavuklarda hepatik glikojen birikiminin benzer yoğunlukta olduğu görüldü. 14 günlük rat ve tavuk fötuslarında hepatik glikojen miktarı karşılaştırıldığında, tavuk fötus hepatositlerinin çoğunda glikojen granüllerine rastlanırken rat fötuslarında yok denecek kadar az miktarda glikojen granülüne rastlandı. Hayvanlar arasındaki bu fark istatistiksel olarak da anlamlı bulundu (p<0.001). 18 günlük rat fötuslarındaki glikojen birikiminin tavuk fötuslarına göre daha az miktarda olduğu gözlendi. Hayvanlar arasındaki bu fark istatistiksel olarak da anlamlı bulundu (p=0.013). Karaciğer lipid birikiminin ışık mikroskobik incelemelerinde, erişkin rat ve tavuk hepatositlerinde benzer oranlarda lipid damlacığı görüldü. 14 ve 18 günlük tavuk fötusu hepatositlerinde 14 ve 18 günlük rat fötuslarına oranla belirgin derecede fazla miktarda lipid damlacığı tespit edildi. Hayvanlar arasındaki bu farklar istatistiksel olarak da anlamlı bulundu (p<0.001).

Destekleyen Kurum

Ankara Üniversitesi Bilimsel Araştırma Projeleri Müdürlüğü (AUBAP)

Proje Numarası

18L0239018

Teşekkür

Ankara Üniversitesi Bilimsel Araştırma Projeleri Müdürlüğü (AUBAP)

Kaynakça

  • 1. Altınışık M. Karbonhidrat Metabolizması Bozukluklarına Biyokimyasal Yaklaşım. Adnan Menderes Üniversitesi Tıp Fakültesi Dergisi. 2010; 11: 51-59. (in Turkish with an abstract in English).
  • 2. Aydın S, Tekelioğlu Y, Odacı E, Arvas A, Arvas H. İnsan fetus karaciğerinin ışık mikroskobik ve akım sitometrik incelenmesi. Turkiye Klinikleri J Med Sci. 2000; 20(2):57-65.
  • 3. Bancroft JD, Gamble M. Theory and Practice of Histological Techniques, 5th Ed., Elsevier Limited. 2002; pp. 125-231.
  • 4. Borrebaek B, Christophersen B, Tranulis MA, Aulie A. Pre- and post-natal hepatic glucose phosphorylation in chicks (Gallus domesticus). British poultry science. 2007; 48(6): 729–731.
  • 5. Chaves JM, Herrera E. In vitro glycerol metabolism in adipose tissue from fasted pregnant rats. Biochemical and biophysical research communications. 1978; 85:1299-1306.
  • 6. De Oliveira JE, Uni Z, Ferket PR. Important metabolic pathways in poultry embryos prior to hatch. World's Poultry Science Journal. 2008; 64(4):488–499.
  • 7. Dvorak M. Submicroscopic Cytodifferentiation. Adv Anat Embryol Cell Biol. 1971; 45: 25-55.
  • 8. Elias H. Origin and early development of the liver in various vertebrates. Acta Hepatologica. 1955; 3: 1-56.
  • 9. Fowden AL. Growth and metabolism, In: Fötal Growth and Development, Ed; Harding R, Bocking AD, 1th Ed., United Kingdom at the University Press, Cambridge. 2001.
  • 10. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. Journal Of Morphology. 1951; 88(1):49-92.
  • 11. Hendrickse W, Stammers JP, Hull D. The transfer of free fatty acids across the human placenta. British journal of obstetrics and gynaecology. 1985; 92(9): 945–52.
  • 12. Herrera E, Amusquivar E, López-Soldado I, Ortega, H. Maternal lipid metabolism and placental lipid transfer. Hormone research. 2006; 65(3): 59–64.
  • 13. Junqueira LC, Charneiro J. Sindirim Kanalına Bağlı Bezler, In: Temel Histoloji text&atlas, Ed; Solakoğlu S, Aytekin Y, 11th Ed., The McGraw-Hill Companies, Nobel Matbaacılık, İstanbul. 2009; pp. 317-337.
  • 14. Kierszenbaum AL, Tres LL. Histology and Cell Biology: An Introduction to Pathology. 4th Ed., Elsevier Saunders. 2016; pp. 540-553.
  • 15. Kimura RE. Lipid Metabolism in the Fötal-Placental Unit, In: Principles of Perinatal-Neonatal Metabolism, Ed; Cowett RW, 2th Ed., Springer-Verlag New York Inc. 1991; pp. 389-402.
  • 16. King A, Loke YW. Unexplained fötal growth retardation: What is the cause?. Archives of Disease in Childhood. 1994; 70: F225-F227.
  • 17. Knopp RH, Herrera E, Freinkel N. Carbohydrate metabolism in pregnancy. 8. Metabolism of adipose tissue isolated from fed and fasted pregnant rats during late gestation. The Journal of clinical investigation. 1970; 49: 1438-1446.
  • 18. Krebs HA. Some aspects of the regulation of fuel supply in omnivorous animals. Advances in Enzyme Regulation. 1972; 10: 397–420.
  • 19. Leskes A, Siekevitz P, Palade GE. Differentiation of endoplasmic reticulum in hepatocytes I. Glucose-6-phosphatase distribution in situ. The Journal of Cell Biology. 1971; 49(2): 264–287.
  • 20. Lopez LP, Maier I, Herrera E. Carcass and tissue fat content in the pregnant rat. Biology of the neonate. 1991; 60(1): 29-38. López-Luna P, Muñoz T, Herrera E. Body fat in pregnant rats at mid- and late-gestation. Life sciences. 1986; 39(15): 1389–1393.
  • 21. Luzzatto AC. Hepatocyte differentiation during early fetal development in the rat. Cell and Tissue Research. 1981; 215(1): 133–142.
  • 22. Machida T, Taga M, Minaguchi H. Effect of Prolactin (PRL) on Lipoprotein Lipase (LPL) Activity in the Rat Fötal Liver. Asia-Oceania journal of obstetrics and gynaecology. 1990; 16(3): 261-265.
  • 23. Martin HA, Holm C, Belfrage P, Schotz MC, Herrera E. Lipoprotein lipase and hormone-sensitive lipase activity and mRNA in rat adipose tissue during pregnancy. The American journal of physiology. 1994; 266: 930-935.
  • 24. Mitra V, Metcalf J. Metabolic functions of the liver. Anaesthesia and Intensive Care Medicine. 2012; 13(2): 54-55.
  • 25. Petorak I. İnsan Embriyolojisinin Ana Hatları. Beta Basım Yayıncılık, İstanbul. 1986; pp. 200-202.
  • 26. Rao PN, Shashidhar A, Ashok C. In utero fuel homeostasis: Lessons for a clinician. Indian Journal of Endocrinology and Metabolism. 2013; 17(1):60–68.
  • 27. Rideau N, Berradi H, Skiba-Cassy S, Pansera TS, Cailleau-Audouin E, Dupont J. Induction of glucokinase in chicken liver by dietary carbohydrates. General and Comparative Endocrinology. 2008; 158:173–177.
  • 28. Suksaweang S, Lin CM, Jiang TX, Hughes MW, Widelits RB, Chuong CM. Morphogenesis of chicken liver: identification of localized growth zones and the role of β-catenin/Wnt in size regulation. Developmental biology. 2004; 266(1):109–122.
  • 29. Trefts E, Gannon M, Wasserman DH. The liver. Current biology. 2017; 27(21): R1147–R1151.
  • 30. Uni Z, Yadgary L, Yair R. Nutritional limitations during poultry embryonic development. The Journal of Applied Poultry Research. 2012; 21 (1): 175-184.
  • 31. Willemsen H, Kamers B, Dahlke F, Han H, Song Z, Pirsaraei ZA, Tona K, Decuypere E, Everaert N. High- and low-temperature manipulation during late incubation: Effects on embryonic development, the hatching process, and metabolism in broilers. Poultry Science. 2010; 89:2678–2690.
  • 32. Wong GK, Cavey MJ. Development of the Liver in the Chicken Embryo. I. Hepatic cords and sinusoids. The Anatomıcal Record. 1992; 234:555-567. Yang X, Zhuang J, Rao K, Li X, Zhao R. Effect of early feed restriction on hepatic lipid metabolism and expression of lipogenic genes in broiler chickens. Research in Veterinary Science. 2010; 89: 438–444.
  • 33. Yeung D, Stanley RS, Oliver IT. Development of Gluconeogenesis in Neonatal Rat Liver. Effect of triamcinolone. Biochemical journal 1967; 105(3):1219-1227.
  • 34. Zhao S, Ma H, Zou S, Chen W, Zhao R. Hepatic Lipogenesis in Broiler Chickens with Different Fat Deposition during Embryonic Development. Journal of veterinary medicine. A, Physiology, pathology, clinical medicine. 2007; 54:1–6.

Comparison of Fat and Carbohydrate Metabolisms in Chicken and Rat Liver

Yıl 2022, Cilt: 15 Sayı: 1, 15 - 28, 31.03.2022
https://doi.org/10.30607/kvj.939149

Öz

The aim of this study is to reveal histological differences between prenatal and adult liver carbohydrate and fat metabolism in chickens and rats. In this study, 30 Wistar albino rats and 30 Ross breed broiler chickens were used. The rats and chickens were divided into groups of 10. These groups were categorized as adult, 14- and 18-day-old fetus groups. In this study, the fat and carbohydrate metabolisms in rat and chicken liver were studied by histological methods, and changes in adult and fetal periods were evaluated comparatively. In the light microscopic examinations of liver carbohydrate accumulation, hepatic glycogen accumulation was similar in the adult rats and chickens. When the hepatic glycogen amount was compared in the 14-day-old rat and chicken fetuses, while glycogen granules were found in most of the chicken fetal hepatocytes, almost no glycogen granules were found in the rat fetuses. This difference between the animals was found to be statistically significant (p<0.001). It was observed that glycogen accumulation in the 18-day-old rat fetuses was less than that in chicken fetuses. This difference between the animals was found to be statistically significant (p=0.013). Light microscopic examinations of liver lipid accumulation showed that similar ratios of lipid droplets were observed in the hepatocytes of adult rats and chickens. Significantly higher amounts of lipid droplets were detected in the 14- and 18-day-old chicken fetus hepatocytes compared with 14- and 18-day-old rat fetus hepatocytes, which was statistically significant (p<0.001).

Proje Numarası

18L0239018

Kaynakça

  • 1. Altınışık M. Karbonhidrat Metabolizması Bozukluklarına Biyokimyasal Yaklaşım. Adnan Menderes Üniversitesi Tıp Fakültesi Dergisi. 2010; 11: 51-59. (in Turkish with an abstract in English).
  • 2. Aydın S, Tekelioğlu Y, Odacı E, Arvas A, Arvas H. İnsan fetus karaciğerinin ışık mikroskobik ve akım sitometrik incelenmesi. Turkiye Klinikleri J Med Sci. 2000; 20(2):57-65.
  • 3. Bancroft JD, Gamble M. Theory and Practice of Histological Techniques, 5th Ed., Elsevier Limited. 2002; pp. 125-231.
  • 4. Borrebaek B, Christophersen B, Tranulis MA, Aulie A. Pre- and post-natal hepatic glucose phosphorylation in chicks (Gallus domesticus). British poultry science. 2007; 48(6): 729–731.
  • 5. Chaves JM, Herrera E. In vitro glycerol metabolism in adipose tissue from fasted pregnant rats. Biochemical and biophysical research communications. 1978; 85:1299-1306.
  • 6. De Oliveira JE, Uni Z, Ferket PR. Important metabolic pathways in poultry embryos prior to hatch. World's Poultry Science Journal. 2008; 64(4):488–499.
  • 7. Dvorak M. Submicroscopic Cytodifferentiation. Adv Anat Embryol Cell Biol. 1971; 45: 25-55.
  • 8. Elias H. Origin and early development of the liver in various vertebrates. Acta Hepatologica. 1955; 3: 1-56.
  • 9. Fowden AL. Growth and metabolism, In: Fötal Growth and Development, Ed; Harding R, Bocking AD, 1th Ed., United Kingdom at the University Press, Cambridge. 2001.
  • 10. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. Journal Of Morphology. 1951; 88(1):49-92.
  • 11. Hendrickse W, Stammers JP, Hull D. The transfer of free fatty acids across the human placenta. British journal of obstetrics and gynaecology. 1985; 92(9): 945–52.
  • 12. Herrera E, Amusquivar E, López-Soldado I, Ortega, H. Maternal lipid metabolism and placental lipid transfer. Hormone research. 2006; 65(3): 59–64.
  • 13. Junqueira LC, Charneiro J. Sindirim Kanalına Bağlı Bezler, In: Temel Histoloji text&atlas, Ed; Solakoğlu S, Aytekin Y, 11th Ed., The McGraw-Hill Companies, Nobel Matbaacılık, İstanbul. 2009; pp. 317-337.
  • 14. Kierszenbaum AL, Tres LL. Histology and Cell Biology: An Introduction to Pathology. 4th Ed., Elsevier Saunders. 2016; pp. 540-553.
  • 15. Kimura RE. Lipid Metabolism in the Fötal-Placental Unit, In: Principles of Perinatal-Neonatal Metabolism, Ed; Cowett RW, 2th Ed., Springer-Verlag New York Inc. 1991; pp. 389-402.
  • 16. King A, Loke YW. Unexplained fötal growth retardation: What is the cause?. Archives of Disease in Childhood. 1994; 70: F225-F227.
  • 17. Knopp RH, Herrera E, Freinkel N. Carbohydrate metabolism in pregnancy. 8. Metabolism of adipose tissue isolated from fed and fasted pregnant rats during late gestation. The Journal of clinical investigation. 1970; 49: 1438-1446.
  • 18. Krebs HA. Some aspects of the regulation of fuel supply in omnivorous animals. Advances in Enzyme Regulation. 1972; 10: 397–420.
  • 19. Leskes A, Siekevitz P, Palade GE. Differentiation of endoplasmic reticulum in hepatocytes I. Glucose-6-phosphatase distribution in situ. The Journal of Cell Biology. 1971; 49(2): 264–287.
  • 20. Lopez LP, Maier I, Herrera E. Carcass and tissue fat content in the pregnant rat. Biology of the neonate. 1991; 60(1): 29-38. López-Luna P, Muñoz T, Herrera E. Body fat in pregnant rats at mid- and late-gestation. Life sciences. 1986; 39(15): 1389–1393.
  • 21. Luzzatto AC. Hepatocyte differentiation during early fetal development in the rat. Cell and Tissue Research. 1981; 215(1): 133–142.
  • 22. Machida T, Taga M, Minaguchi H. Effect of Prolactin (PRL) on Lipoprotein Lipase (LPL) Activity in the Rat Fötal Liver. Asia-Oceania journal of obstetrics and gynaecology. 1990; 16(3): 261-265.
  • 23. Martin HA, Holm C, Belfrage P, Schotz MC, Herrera E. Lipoprotein lipase and hormone-sensitive lipase activity and mRNA in rat adipose tissue during pregnancy. The American journal of physiology. 1994; 266: 930-935.
  • 24. Mitra V, Metcalf J. Metabolic functions of the liver. Anaesthesia and Intensive Care Medicine. 2012; 13(2): 54-55.
  • 25. Petorak I. İnsan Embriyolojisinin Ana Hatları. Beta Basım Yayıncılık, İstanbul. 1986; pp. 200-202.
  • 26. Rao PN, Shashidhar A, Ashok C. In utero fuel homeostasis: Lessons for a clinician. Indian Journal of Endocrinology and Metabolism. 2013; 17(1):60–68.
  • 27. Rideau N, Berradi H, Skiba-Cassy S, Pansera TS, Cailleau-Audouin E, Dupont J. Induction of glucokinase in chicken liver by dietary carbohydrates. General and Comparative Endocrinology. 2008; 158:173–177.
  • 28. Suksaweang S, Lin CM, Jiang TX, Hughes MW, Widelits RB, Chuong CM. Morphogenesis of chicken liver: identification of localized growth zones and the role of β-catenin/Wnt in size regulation. Developmental biology. 2004; 266(1):109–122.
  • 29. Trefts E, Gannon M, Wasserman DH. The liver. Current biology. 2017; 27(21): R1147–R1151.
  • 30. Uni Z, Yadgary L, Yair R. Nutritional limitations during poultry embryonic development. The Journal of Applied Poultry Research. 2012; 21 (1): 175-184.
  • 31. Willemsen H, Kamers B, Dahlke F, Han H, Song Z, Pirsaraei ZA, Tona K, Decuypere E, Everaert N. High- and low-temperature manipulation during late incubation: Effects on embryonic development, the hatching process, and metabolism in broilers. Poultry Science. 2010; 89:2678–2690.
  • 32. Wong GK, Cavey MJ. Development of the Liver in the Chicken Embryo. I. Hepatic cords and sinusoids. The Anatomıcal Record. 1992; 234:555-567. Yang X, Zhuang J, Rao K, Li X, Zhao R. Effect of early feed restriction on hepatic lipid metabolism and expression of lipogenic genes in broiler chickens. Research in Veterinary Science. 2010; 89: 438–444.
  • 33. Yeung D, Stanley RS, Oliver IT. Development of Gluconeogenesis in Neonatal Rat Liver. Effect of triamcinolone. Biochemical journal 1967; 105(3):1219-1227.
  • 34. Zhao S, Ma H, Zou S, Chen W, Zhao R. Hepatic Lipogenesis in Broiler Chickens with Different Fat Deposition during Embryonic Development. Journal of veterinary medicine. A, Physiology, pathology, clinical medicine. 2007; 54:1–6.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Bilimleri
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Füsun Erhan Baycumendur 0000-0001-9860-3771

Levent Ergün 0000-0002-9257-7987

Proje Numarası 18L0239018
Yayımlanma Tarihi 31 Mart 2022
Kabul Tarihi 3 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 15 Sayı: 1

Kaynak Göster

APA Erhan Baycumendur, F., & Ergün, L. (2022). Comparison of Fat and Carbohydrate Metabolisms in Chicken and Rat Liver. Kocatepe Veterinary Journal, 15(1), 15-28. https://doi.org/10.30607/kvj.939149
AMA Erhan Baycumendur F, Ergün L. Comparison of Fat and Carbohydrate Metabolisms in Chicken and Rat Liver. kvj. Mart 2022;15(1):15-28. doi:10.30607/kvj.939149
Chicago Erhan Baycumendur, Füsun, ve Levent Ergün. “Comparison of Fat and Carbohydrate Metabolisms in Chicken and Rat Liver”. Kocatepe Veterinary Journal 15, sy. 1 (Mart 2022): 15-28. https://doi.org/10.30607/kvj.939149.
EndNote Erhan Baycumendur F, Ergün L (01 Mart 2022) Comparison of Fat and Carbohydrate Metabolisms in Chicken and Rat Liver. Kocatepe Veterinary Journal 15 1 15–28.
IEEE F. Erhan Baycumendur ve L. Ergün, “Comparison of Fat and Carbohydrate Metabolisms in Chicken and Rat Liver”, kvj, c. 15, sy. 1, ss. 15–28, 2022, doi: 10.30607/kvj.939149.
ISNAD Erhan Baycumendur, Füsun - Ergün, Levent. “Comparison of Fat and Carbohydrate Metabolisms in Chicken and Rat Liver”. Kocatepe Veterinary Journal 15/1 (Mart 2022), 15-28. https://doi.org/10.30607/kvj.939149.
JAMA Erhan Baycumendur F, Ergün L. Comparison of Fat and Carbohydrate Metabolisms in Chicken and Rat Liver. kvj. 2022;15:15–28.
MLA Erhan Baycumendur, Füsun ve Levent Ergün. “Comparison of Fat and Carbohydrate Metabolisms in Chicken and Rat Liver”. Kocatepe Veterinary Journal, c. 15, sy. 1, 2022, ss. 15-28, doi:10.30607/kvj.939149.
Vancouver Erhan Baycumendur F, Ergün L. Comparison of Fat and Carbohydrate Metabolisms in Chicken and Rat Liver. kvj. 2022;15(1):15-28.

13520    13521       13522   1352314104

14105         14106        14107       14108