Escherichia coli ve Rotavirus Kaynaklı İshalli Neonatal Buzağılarda Serum Prokalsitonin ve Demir Düzeylerinin Ayırıcı Tanı Değeri
Yıl 2023,
Cilt: 16 Sayı: 1, 77 - 85, 31.03.2023
Şükrü Değirmençay
,
Muhammed Sertaç Eroğlu
,
Emre Eren
Öz
Yeni doğan buzağılarda ishale neden olan en yaygın patojenler Escherichia coli (E. coli) ve rotavirüs’tür. Prokalsitonin (PCT), son zamanlarda bulaşıcı hastalıkların etiyolojisinin bakteriyel olup olmadığını belirlemek için yaygın olarak kullanılan bir parametredir. Demir (Fe) neredeyse tüm bakteri türleri için temel bir besin olup serum Fe düzeyleri yangısal bir biyobelirteç olarak kullanılmaktadır. Bu yüzden bu çalışmada E. coli ve rotavirüs ishallerinde serum Fe ve PCT düzeylerinin ayırıcı tanı değerini araştırmayı amaçladık. Çalışmanın materyalini 1-15 günlük 30 buzağı oluşturdu. Buzağılar E. coli (n=10), rotavirüs (n=10) ve kontrol (n=10) grubu olmak üzere 3 gruba ayrıldı. En yüksek PCT (P=0.005) ve CRP (P=0.003) değerleri ve en düşük Fe (P=0.000) değerleri E. coli grubundaki buzağılarda saptandı. Sonuç olarak, serum Fe düzeylerinin inflamatuar belirteç olarak kullanılabileceği ve 50 pg/mL'den yüksek PCT düzeylerinin buzağılarda E. coli’ye bağlı ishalin ayırıcı tanısında %100 duyarlılık ve %100 özgüllük ile kullanılabileceği belirlendi.
Kaynakça
- Alfieri AA, Parazzi ME, Takiuchi E, Médici KC, Alfieri AF. Frequency of group A rotavirus in diarrhoeic calves in Brazilian cattle herds, 1998-2002. Trop. Anim. Health Prod. 2006;38(7–8): 521–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17265766
- Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet (London, England) 1993;341(8844): 515–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8094770
- Ayoglu H, Sezer U, Akin M, Okyay D, Ayoglu F, Can M, Kucukosman G, Piskin O, Aydin B, Cimencan M, Gur A, Turan I. Selenium, copper, zinc, iron levels and mortality in patients with sepsis and systemic inflammatory response syndrome in Western Black Sea Region, Turkey. J. Pak. Med. Assoc. 2016;66(4): 447–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27122274
- Barrington GM, Gay JM, Evermann JF. Biosecurity for neonatal gastrointestinal diseases. Vet. Clin. North Am. Food Anim. Pract. 2002;18(1): 7–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12064170
- Baydar E, Dabak M. Serum iron as an indicator of acute inflammation in cattle. J. Dairy Sci. 2014;97(1): 222–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24268402
- Becker KL, Snider R, Nylen ES. Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and a therapeutic target. Br. J. Pharmacol. 2010;159(2): 253–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20002097
- Bonelli F, Meucci V, Divers TJ, Jose-Cunilleras E, Corazza M, Tognetti R, Guidi G, Intorre L, Sgorbini M. Plasma Procalcitonin Concentration in Healthy Horses and Horses Affected by Systemic Inflammatory Response Syndrome. J. Vet. Intern. Med. 2015;29(6): 1689–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26474412
- Borges AS, Divers TJ, Stokol T, Mohammed OH. Serum iron and plasma fibrinogen concentrations as indicators of systemic inflammatory diseases in horses. J. Vet. Intern. Med. 2007;21(3): 489–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17552456
- Bullen JJ. The significance of iron in infection. Rev. Infect. Dis. 1981;3(6): 1127–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7043704
- Carrol ED, Newland P, Riordan FAI, Thomson APJ, Curtis N, Hart CA. Procalcitonin as a diagnostic marker of meningococcal disease in children presenting with fever and a rash. Arch. Dis. Child. 2002;86(4): 282–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11919107
- Ceciliani F, Giordano A, Spagnolo V. The systemic reaction during inflammation: the acute-phase proteins. Protein Pept. Lett. 2002;9(3): 211–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12144517
- Cho Y-I, Yoon K-J. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J. Vet. Sci. 2014;15(1): 1–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24378583
- Cook N, Bridger J, Kendall K, Gomara MI, El-Attar L, Gray J. The zoonotic potential of rotavirus. J. Infect. 2004;48(4): 289–302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15066329
- Covington EW, Roberts MZ, Dong J. Procalcitonin Monitoring as a Guide for Antimicrobial Therapy: A Review of Current Literature. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018;38(5): 569–81. Available from: https://onlinelibrary.wiley.com/doi/10.1002/phar.2112
- Değirmençay Ş, Kirbaş A, Aydin H, Aydin Ö, Aktaş MS, Kaman R. Evaluation of Serum Iron and Ferritin Levels as Inflammatory Markers in Calves with Bovine Respiratory Disease Complex. Acta Vet. Brno. 2022;72(1): 59–75. Available from: https://www.sciendo.com/article/10.2478/acve-2022-0005
- Easley F, Holowaychuk MK, Lashnits EW, Nordone SK, Marr H, Birkenheuer AJ. Serum procalcitonin concentrations in dogs with induced endotoxemia. J. Vet. Intern. Med. 2020;34(2): 653–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31970837
- Eckersall PD, Bell R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010;185(1): 23–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20621712
- Ercan N, Tuzcu N, Başbug O, Tuzcu M, Alim A. Diagnostic value of serum procalcitonin, neopterin, and gamma interferon in neonatal calves with septicemic colibacillosis. J. Vet. Diagn. Invest. 2016;28(2): 180–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26965240
- Fecteau G, Smith BP, George LW. Septicemia and meningitis in the newborn calf. Vet. Clin. North Am. Food Anim. Pract. 2009;25(1): 195–208, vii–viii. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19174289
- Foster DM, Smith GW. Pathophysiology of Diarrhea in Calves. Vet. Clin. North Am. Food Anim. Pract. 2009;25(1): 13–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0749072008000911
- Gendrel D, Raymond J, Coste J, Moulin F, Lorrot M, Guérin S, Ravilly S, Lefèvre H, Royer C, Lacombe C, Palmer P, Bohuon C. Comparison of procalcitonin with C-reactive protein, interleukin 6 and interferon-alpha for differentiation of bacterial vs. viral infections. Pediatr. Infect. Dis. J. 1999;18(10): 875–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10530583
- Gilbert DN. Use of plasma procalcitonin levels as an adjunct to clinical microbiology. J. Clin. Microbiol. 2010;48(7): 2325–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20421436
- Kirbas A, Kandemir FM, Celebi D, Hanedan B, Timurkan MO. The use of inflammatory markers as a diagnostic and prognostic approach in neonatal calves with septicaemia. Acta Vet. Hung. 2019;67(3): 360–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31549538
- Limper M, de Kruif MD, Duits AJ, Brandjes DPM, van Gorp ECM. The diagnostic role of procalcitonin and other biomarkers in discriminating infectious from non-infectious fever. J. Infect. 2010;60(6): 409–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20347867
- Lippi G, Cervellin G. Procalcitonin for diagnosing and monitoring bacterial infections: for or against? Clin. Chem. Lab. Med. 2018;56(8): 1193–5. Available from: https://www.degruyter.com/document/doi/10.1515/cclm-2018-0312/html
- Lofstedt J, Dohoo IR, Duizer G. Model to predict septicemia in diarrheic calves. J. Vet. Intern. Med. 2019;13(2): 81–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10225596
- Matur E, Eraslan E, Çötelioğlu U. Biology of procalcitonin and its potential role in veterinary medicine. J. Istanbul Vet. Sci. 2017;1(1): 16–27.
- Meganck V, Hoflack G, Opsomer G. Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematical review with emphasis on colostrum management and fluid therapy. Acta Vet. Scand. 2014;56: 75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25431305
- Müller B, Harbarth S, Stolz D, Bingisser R, Mueller C, Leuppi J, Nusbaumer C, Tamm M, Christ-Crain M. Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia. BMC Infect. Dis. 2007;7: 10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17335562
- Neumann S. Serum iron level as an indicator for inflammation in dogs and cats. Comp. Clin. Path. 2003;12(2): 90–4. Available from: http://link.springer.com/10.1007/s00580-003-0481-3
- Petersen HH, Nielsen JP, Heegaard PMH. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. 2004;35(2): 163–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15099494
- Pfäfflin A, Schleicher E. Inflammation markers in point-of-care testing (POCT). Anal. Bioanal. Chem. 2009;393(5): 1473–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19104782
- Ruokonen E, Ilkka L, Niskanen M, Takala J. Procalcitonin and neopterin as indicators of infection in critically ill patients. Acta Anaesthesiol. Scand. 2002;46(4): 398–404. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11952440
- Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum Procalcitonin and C-Reactive Protein Levels as Markers of Bacterial Infection: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2004;39(2): 206–17. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/421997
- Teschner D, Rieger M, Koopmann C, Gehlen H. Procalcitonin in horses with an acute colic. Pferdeheilkd. Equine Med. 2015;31(4): 371–7. Available from: https://www.pferdeheilkunde.de/10.21836/PEM20150407
- Tsukano K, Shimamori T, Fukuda T, Nishi Y, Otsuka M, Kitade Y, Suzuki K. Serum iron concentration as a marker of inflammation in young cows that underwent dehorning operation. J. Vet. Med. Sci. 2019;81(4): 626–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30828032
- Tsukano K, Shimamori T, Suzuki K. Serum iron concentration in cattle with endotoxaemia. Acta Vet. Hung. 2020;68(1): 53–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32384071
- Weinberg ED, Miklossy J. Iron withholding: a defense against disease. J. Alzheimers. Dis. 2008;13(4): 451–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18487852
- Wolfisberg S, Gregoriano C, Schuetz P. Procalcitonin for individualizing antibiotic treatment: an update with a focus on COVID-19. Crit. Rev. Clin. Lab. Sci. 2022;59(1): 54–65. Available from: https://www.tandfonline.com/doi/full/10.1080/10408363.2021.1975637
- Yurdakul İ, Aydoğdu U. The effects of local and systemic inflammatory status on iron metabolism and lipid profile in calves. Eurasian J. Vet. Sci. 2020;36(2): 121–6. Available from: http://eurasianjvetsci.org/pdf/pdf_EJVS_1288.pdf
- Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Serum Iron Level as a Potential Predictor of Coronavirus Disease 2019 Severity and Mortality: A Retrospective Study. Open forum Infect. Dis. 2020;7(7): ofaa250. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32661499
Differential Diagnostic Value of Serum Procalcitonin and Iron Levels in Diarrheic Neonatal Calves Caused by Escherichia coli and Rotavirus
Yıl 2023,
Cilt: 16 Sayı: 1, 77 - 85, 31.03.2023
Şükrü Değirmençay
,
Muhammed Sertaç Eroğlu
,
Emre Eren
Öz
The most common enteropathogens causing diarrhea in neonatal calves are Escherichia coli (E. coli) and rotavirus. Procalcitonin (PCT) is a parameter that has recently become widely used to determine whether infectious diseases are caused by bacteria. Iron is an essential nutrient for almost all bacterial species, and serum iron levels are used as an inflammatory biomarker. Therefore, in this study, we aimed to investigate the differential diagnosis value of serum iron and procalcitonin levels in E. coli and rotavirus diarrhea. The material of the study consisted of 30 calves 1-15 days old. Three groups were formed as: E. coli (n=10), rotavirus (n=10) and control (n=10). Calves in the E. coli group had the highest PCT (P=0.005) and CRP (P=0.003) levels, as well as the lowest Fe (P=0.000) levels. As a result, it was determined that serum Fe levels could be used as an inflammatory marker and PCT levels higher than 50 pg/mL could be used in the differential diagnosis of E. coli diarrhea in calves with 100% sensitivity and 100% specificity.
Kaynakça
- Alfieri AA, Parazzi ME, Takiuchi E, Médici KC, Alfieri AF. Frequency of group A rotavirus in diarrhoeic calves in Brazilian cattle herds, 1998-2002. Trop. Anim. Health Prod. 2006;38(7–8): 521–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17265766
- Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet (London, England) 1993;341(8844): 515–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8094770
- Ayoglu H, Sezer U, Akin M, Okyay D, Ayoglu F, Can M, Kucukosman G, Piskin O, Aydin B, Cimencan M, Gur A, Turan I. Selenium, copper, zinc, iron levels and mortality in patients with sepsis and systemic inflammatory response syndrome in Western Black Sea Region, Turkey. J. Pak. Med. Assoc. 2016;66(4): 447–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27122274
- Barrington GM, Gay JM, Evermann JF. Biosecurity for neonatal gastrointestinal diseases. Vet. Clin. North Am. Food Anim. Pract. 2002;18(1): 7–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12064170
- Baydar E, Dabak M. Serum iron as an indicator of acute inflammation in cattle. J. Dairy Sci. 2014;97(1): 222–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24268402
- Becker KL, Snider R, Nylen ES. Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and a therapeutic target. Br. J. Pharmacol. 2010;159(2): 253–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20002097
- Bonelli F, Meucci V, Divers TJ, Jose-Cunilleras E, Corazza M, Tognetti R, Guidi G, Intorre L, Sgorbini M. Plasma Procalcitonin Concentration in Healthy Horses and Horses Affected by Systemic Inflammatory Response Syndrome. J. Vet. Intern. Med. 2015;29(6): 1689–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26474412
- Borges AS, Divers TJ, Stokol T, Mohammed OH. Serum iron and plasma fibrinogen concentrations as indicators of systemic inflammatory diseases in horses. J. Vet. Intern. Med. 2007;21(3): 489–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17552456
- Bullen JJ. The significance of iron in infection. Rev. Infect. Dis. 1981;3(6): 1127–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7043704
- Carrol ED, Newland P, Riordan FAI, Thomson APJ, Curtis N, Hart CA. Procalcitonin as a diagnostic marker of meningococcal disease in children presenting with fever and a rash. Arch. Dis. Child. 2002;86(4): 282–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11919107
- Ceciliani F, Giordano A, Spagnolo V. The systemic reaction during inflammation: the acute-phase proteins. Protein Pept. Lett. 2002;9(3): 211–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12144517
- Cho Y-I, Yoon K-J. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J. Vet. Sci. 2014;15(1): 1–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24378583
- Cook N, Bridger J, Kendall K, Gomara MI, El-Attar L, Gray J. The zoonotic potential of rotavirus. J. Infect. 2004;48(4): 289–302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15066329
- Covington EW, Roberts MZ, Dong J. Procalcitonin Monitoring as a Guide for Antimicrobial Therapy: A Review of Current Literature. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018;38(5): 569–81. Available from: https://onlinelibrary.wiley.com/doi/10.1002/phar.2112
- Değirmençay Ş, Kirbaş A, Aydin H, Aydin Ö, Aktaş MS, Kaman R. Evaluation of Serum Iron and Ferritin Levels as Inflammatory Markers in Calves with Bovine Respiratory Disease Complex. Acta Vet. Brno. 2022;72(1): 59–75. Available from: https://www.sciendo.com/article/10.2478/acve-2022-0005
- Easley F, Holowaychuk MK, Lashnits EW, Nordone SK, Marr H, Birkenheuer AJ. Serum procalcitonin concentrations in dogs with induced endotoxemia. J. Vet. Intern. Med. 2020;34(2): 653–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31970837
- Eckersall PD, Bell R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010;185(1): 23–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20621712
- Ercan N, Tuzcu N, Başbug O, Tuzcu M, Alim A. Diagnostic value of serum procalcitonin, neopterin, and gamma interferon in neonatal calves with septicemic colibacillosis. J. Vet. Diagn. Invest. 2016;28(2): 180–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26965240
- Fecteau G, Smith BP, George LW. Septicemia and meningitis in the newborn calf. Vet. Clin. North Am. Food Anim. Pract. 2009;25(1): 195–208, vii–viii. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19174289
- Foster DM, Smith GW. Pathophysiology of Diarrhea in Calves. Vet. Clin. North Am. Food Anim. Pract. 2009;25(1): 13–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0749072008000911
- Gendrel D, Raymond J, Coste J, Moulin F, Lorrot M, Guérin S, Ravilly S, Lefèvre H, Royer C, Lacombe C, Palmer P, Bohuon C. Comparison of procalcitonin with C-reactive protein, interleukin 6 and interferon-alpha for differentiation of bacterial vs. viral infections. Pediatr. Infect. Dis. J. 1999;18(10): 875–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10530583
- Gilbert DN. Use of plasma procalcitonin levels as an adjunct to clinical microbiology. J. Clin. Microbiol. 2010;48(7): 2325–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20421436
- Kirbas A, Kandemir FM, Celebi D, Hanedan B, Timurkan MO. The use of inflammatory markers as a diagnostic and prognostic approach in neonatal calves with septicaemia. Acta Vet. Hung. 2019;67(3): 360–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31549538
- Limper M, de Kruif MD, Duits AJ, Brandjes DPM, van Gorp ECM. The diagnostic role of procalcitonin and other biomarkers in discriminating infectious from non-infectious fever. J. Infect. 2010;60(6): 409–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20347867
- Lippi G, Cervellin G. Procalcitonin for diagnosing and monitoring bacterial infections: for or against? Clin. Chem. Lab. Med. 2018;56(8): 1193–5. Available from: https://www.degruyter.com/document/doi/10.1515/cclm-2018-0312/html
- Lofstedt J, Dohoo IR, Duizer G. Model to predict septicemia in diarrheic calves. J. Vet. Intern. Med. 2019;13(2): 81–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10225596
- Matur E, Eraslan E, Çötelioğlu U. Biology of procalcitonin and its potential role in veterinary medicine. J. Istanbul Vet. Sci. 2017;1(1): 16–27.
- Meganck V, Hoflack G, Opsomer G. Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematical review with emphasis on colostrum management and fluid therapy. Acta Vet. Scand. 2014;56: 75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25431305
- Müller B, Harbarth S, Stolz D, Bingisser R, Mueller C, Leuppi J, Nusbaumer C, Tamm M, Christ-Crain M. Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia. BMC Infect. Dis. 2007;7: 10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17335562
- Neumann S. Serum iron level as an indicator for inflammation in dogs and cats. Comp. Clin. Path. 2003;12(2): 90–4. Available from: http://link.springer.com/10.1007/s00580-003-0481-3
- Petersen HH, Nielsen JP, Heegaard PMH. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. 2004;35(2): 163–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15099494
- Pfäfflin A, Schleicher E. Inflammation markers in point-of-care testing (POCT). Anal. Bioanal. Chem. 2009;393(5): 1473–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19104782
- Ruokonen E, Ilkka L, Niskanen M, Takala J. Procalcitonin and neopterin as indicators of infection in critically ill patients. Acta Anaesthesiol. Scand. 2002;46(4): 398–404. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11952440
- Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum Procalcitonin and C-Reactive Protein Levels as Markers of Bacterial Infection: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2004;39(2): 206–17. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/421997
- Teschner D, Rieger M, Koopmann C, Gehlen H. Procalcitonin in horses with an acute colic. Pferdeheilkd. Equine Med. 2015;31(4): 371–7. Available from: https://www.pferdeheilkunde.de/10.21836/PEM20150407
- Tsukano K, Shimamori T, Fukuda T, Nishi Y, Otsuka M, Kitade Y, Suzuki K. Serum iron concentration as a marker of inflammation in young cows that underwent dehorning operation. J. Vet. Med. Sci. 2019;81(4): 626–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30828032
- Tsukano K, Shimamori T, Suzuki K. Serum iron concentration in cattle with endotoxaemia. Acta Vet. Hung. 2020;68(1): 53–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32384071
- Weinberg ED, Miklossy J. Iron withholding: a defense against disease. J. Alzheimers. Dis. 2008;13(4): 451–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18487852
- Wolfisberg S, Gregoriano C, Schuetz P. Procalcitonin for individualizing antibiotic treatment: an update with a focus on COVID-19. Crit. Rev. Clin. Lab. Sci. 2022;59(1): 54–65. Available from: https://www.tandfonline.com/doi/full/10.1080/10408363.2021.1975637
- Yurdakul İ, Aydoğdu U. The effects of local and systemic inflammatory status on iron metabolism and lipid profile in calves. Eurasian J. Vet. Sci. 2020;36(2): 121–6. Available from: http://eurasianjvetsci.org/pdf/pdf_EJVS_1288.pdf
- Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Serum Iron Level as a Potential Predictor of Coronavirus Disease 2019 Severity and Mortality: A Retrospective Study. Open forum Infect. Dis. 2020;7(7): ofaa250. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32661499