Review
BibTex RIS Cite
Year 2021, Volume: 61 Issue: 1, 37 - 45, 01.07.2021
https://doi.org/10.46897/livestockstudies.610106

Abstract

References

  • Agarwal, A., & Majzoub, A. (2017). Role of antioxidants in Assisted Reproductive Techniques. World J. Mens. Health. 35: 77-93. https://doi.org/10.5534/wjmh.2017.35.2.77
  • Agarwal, A., Durairajanayagam, D., & Du Plessis, S. S. (2014). Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reproductive Biology and Endocrinology, 12(1), 1-19.
  • Agarwal, A., Makker, K., & Sharma, R. (2008). “Clinical relevance of oxidative stress in male factor infertility: an update,” American Journal of Reproductive Immunology. 59: 2–11. https://doi.org/10.1111/j.1600-0897.2007.00559.x
  • Aitken, R. J. (2017). Reactive oxygen species as mediators of sperm capacitation and pathological damage. Molecular reproduction and development, 84(10), 1039-1052. https://doi.org/10.1002/mrd.22871
  • Amidi, F., Pazhohan, A., Nashtaei, M.S., Khodarahmian, M., & Nekoonam, S. (2016). The role of antioxidants in sperm freezing: a review. Cell Tissue Bank. 31: 330-9. https://doi.org/10.1007/s10561-016-9566-5.
  • Andreea, A., & Stela, Z. (2010). Role of antioxidant additives in the protection of the cryopreserved semen against free radicals. Rom Biotechnol Lett. 15: 33-41.
  • Atmaca, G. (2004). Antioxidant effects of sulfur-containing amino acids. Yonsei Medical Journal. 45: 776-88. https://doi.org/10.3349/ymj.2004.45.5.776
  • Ball, B.A. (2008). Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse. Anim. Reprod. Sci. 107: 257-67. https://doi.org/10.1016/j.anireprosci.2008.04.014
  • Bansal, A.K., & Bilaspuri, G.S. (2010a) Impacts of Oxidative Stress and Antioxidants on Semen Functions. SAGE-Hindawi Access to Research Veterinary Medicine International. Volume 2011. https://doi.org/10.4061/2011/686137
  • Bansal, A.K., & Bilaspuri, G.S. (2010b). Effect of vitamin E and Mn2+ on the thiol status of cattle bull spermatozoa under induced oxidative stress. Animal Science Papers and Reports. 28: 335-45.
  • Bello, T.K., Oyelowo, B.B., Khumran, A.M., Hassan, R., Oke-Ebgodo, B.E., Idris, S.Y., Aliyu, M.A., & Maikaji, F. (2020). Antioxidative roles of Glutathione, Butylated Hydroxytoluene and Melatonin in semen preservation- A Review. Nig. J. Anim. Sci. Tech. 3(1): 130-9.
  • Bhattacharya, K., Sengupta, P., & Dutta, S. (2019). Role of melatonin in male reproduction. Asian Pacific Journal of Reproduction, 8(5), 211.
  • Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organ J. 5: 9-19. https://doi.org/10.1097/WOX.0b013e3182439613
  • Bollwein, H., & Bittner, L. (2018). Impacts of oxidative stress on bovine sperm function and subsequent in vitro embryo development. Anim. Reprod. 15: 703-10. http://dx.doi.org/10.21451/1984-3143-AR2018-0041
  • Bollwein, H., Fuchs, I., & Koess, C. (2008). Interrelationship between plasma membrane integrity, mitochondrial membrane potential and DNA fragmentation in cryopreserved bovine spermatozoa. Reprod Domest Anim. 43:189-95. https://doi.org/10.1111/j.1439-0531.2007.00876.x.
  • Bucak, M.N., Sarıozkan, S., Tuncer, P.B., Ateşşahin, A., Kulaksız, R., & Çevik, M. (2010). The effect of antioxidants on post-thawed Angora goat (Capra hircus ancryrensis) spermparameters, lipid peroxidation and antioxidant activities. Small Ruminant Research. 89, 24-30. https://doi.org/10.1016/j.smallrumres.2009.11.015
  • Cadet, J., Douki, T., Gasparutto, D., & Ravanat, J. (2003). Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res Mol Mech Mutagen. 531: 5-23. https://doi.org/10.1016/j.mrfmmm.2003.09.001
  • Çoyan, K., Bucak, M.N., Başpınar, N., Taşpınar, M., & Aydos, S. (2012). Ergothioneine attenuates the DNA damage of post-thawed Merino ram sperm. Small Rumin. Res. 106: 165-7. https://doi.org/10.1016/j.smallrumres.2012.02.002
  • Desai, N.R., Mahfouz, R., Sharma, R., Gupta, S., & Agarwal, A. (2010). Reactive oxygen species levels are independent of sperm concentration, motility, and abstinence in a normal, healthy, proven fertileman: a longitudinal study. FERTIL STERIL. 94: 1541-43. https://doi.org/10.1016/j.fertnstert.2009.12.041
  • Dorostkar, K., Alavi Shoushtari, S.M., & Khaki, A. (2014). Effects of in vitro zinc sulphate additive to the semen extender on water buffalo (Bubalus bubalis) spermatozoa before and after freezing. International Journal of Fertility & Sterility. 8(3): 325-32.
  • Dorostkar, K., Alavi-Shoushtari, S.M., & Mokarizadeh, A. (2012). Effects of in vitro selenium addition to the semen extender on the spermatozoa characteristics before and after freezing in water buffaloes (Bubalus bubalis). Veterinary Research Forum, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. 4: 263.
  • Drevet, J.R., & Aitken, R.J. (2020). Oxidation of Sperm Nucleus in Mammals: A Physiological Necessity to Some Extent with Adverse Impacts on Oocyte and Offspring. Antioxidants. 9: 95. https://doi.org/10.3390/antiox9020095
  • Falchia, L., Khalil, W.A., Hassan, M., & Marei, W.F.A. (2018). Perspectives of nanotechnology in male fertility and sperm function. International Journal of Veterinary Science and Medicine. 6: 265-69. https://doi.org/10.1016/j.ijvsm.2018.09.001
  • Farshad, A., Amidi, F., Khor, A.K., & Rashidi, A. (2011). Effect of Cholesterol-loaded cyclodextrin in presence and absence of egg yolk during freezing step on quality of Markhoz Buck’s Spermatozoa. Asian- Australasian Journal of Animal Science. 4: 181-9. https://doi.org/10.5713/ajas.2011.10141
  • Félix, F., Oliveira, C. C., & Cabrita, E. (2021). Antioxidants in Fish Sperm and the Potential Role of Melatonin. Antioxidants, 10(1), 36. https://doi.org/10.3390/antiox10010036
  • Gadea, J., Garcıa-Vazquez, F., Matas, C., Gardon, J.C., Canovas, S., & Gumbao, D. (2005) Cooling and freezing of boar spermatozoa: supplementation of the freezing media with reduced glutathione preserves sperm function. Journal of Andrology. 26: 396-404. https://doi.org/10.2164/jandrol.04155
  • Gonçalves, F., Barretto, L.S.S., Arruda, R.P., Perri, S.H.V., & Mingoti, G.Z. (2010). Effect of antioxidants during bovine in vitro fertilization procedures on spermatozoa and embryo development. Reproduction in Domestic Animals. 45: 129-35. https://doi.org/10.1111/j.1439-0531.2008.01272.x
  • Hezavehei, M., Sharafi, M., Kouchesfahani, H. M., Henkel, R., Agarwal, A., Esmaeili, V., & Shahverdi, A. (2018). Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reproductive Biomedicine Online, 37(3), 327-339. https://doi.org/10.1016/j.rbmo.2018.05.012
  • Hussain, M., Begum, S.S., Kalita, M.K., Ahmed, K.U., & Nath, R. (2018). Additives used in semen preservation in animals: A short review. International Journal of Chemical Studies. 6(5): 354-361.
  • Ifeanyi, O. E. (2018). A review on free radicals and antioxidants. Int. J. Curr. Res. Med. Sci, 4(2), 123-133.
  • Khan, I. M., Xu, D., Cao, Z., Liu, H., Khan, A., Rahman, S. U., & Zhang, Y. (2021). Addition of L-Cysteine and Vitamin E to Semen Diluent Enhances Freeze-thawed Spermatozoa Characteristics in Crossbred Cattle Bulls under Subtropical Environment. Pakistan Journal of Zoology. 1-11.
  • Kumar, T., Kumar, A., Swain, D.K., & Yadav, S. (2011). Influence of oral supplementation of Zinc and Selenium on post thaw semen quality of Barbari bucks. Journal of Animal Research. 1: 41-6.
  • Lambert, I.H., Pedersen, S.F., & Poulsen, K.A. (2006). Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxia. Acta Physiol. 187: 75-85. https://doi.org/10.1111/j.1748-1716.2006.01557.x
  • Martinez-Paramo, S., Diogo, P., Dinis, M., Herraez, M., Sarasquete, C., & Cabrita, E. (2012). Incorporation of ascorbic acid and atocopherol to the extender media to enhance antioxidant system of cryopreserved sea bass sperm. Theriogenology. 77: 1129-36. https://doi.org/10.1016/j.theriogenology.2011.10.017
  • McCarthy, M.J., Baumber, J., Kass, P.H., & Meyers, S.A. (2010). Osmotic stress induces oxidative cell damage to rhesus macaque spermatozoa. Biol. Reprod. 82:644-51. https://doi.org/10.1095/biolreprod.109.080507
  • Medrano, A., Contreras, C.F., Herrera, F.M., & Alcantar-Rodriguez, A.M. (2017). Melatonin as an antioxidant preserving sperm from domestic animals. Asian Pacific Journal of Reproduction. 6: 241-6. https://doi.org/10.4103/2305-0500.217317
  • Moazamian, R., Polhemus, A., Connaughton, H., Fraser, B., Whiting, S., Gharagozloo, P., & Aitken, R.J. (2015). Oxidative stress and human spermatozoa: diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. Mol Hum Reprod. 21: 502-15. https://doi.org/10.1093/molehr/gav014
  • Mora-Esteves, C., & Shin, D. (2013). Nutrient supplementation: improving male fertility fourfold. Seminars in Reproductive Medicine. 31: 293-300. https://doi.org/10.1055/s-0033-1345277
  • Ortiz, A., Espino, J., Bejarano, I., Lozano, G.M., Monllor, F., García, J.F., Pariente, J.A., & Rodríguez, A.B. (2010). High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. Journal of Pineal Research. 50: 132–139. https://doi.org/10.1111/j.1600-079X.2010.00822.x
  • Rocco, M., Betarelli, R., Placci, A., Fernández‐Novell, J. M., Spinaci, M., Casao, A., ... & Rodríguez‐Gil, J. E. (2018). Melatonin affects the motility and adhesiveness of in vitro capacitated boar spermatozoa via a mechanism that does not depend on intracellular ROS levels. Andrology, 6(5), 720-736.
  • Safa, S., Moghaddam, G., Jozani, R.J., Kia, H.D., & Janmohammadi, H. (2016). Effect of vitamin E and selenium nanoparticles on post-thaw variables and oxidative status of rooster semen. Animal Reproduction Science. 174:100-6. https://doi.org/10.1016/j.anireprosci.2016.09.011
  • Samir, H., Nyametease, P., Elbadawy, M., Nagaoka, K., Sasaki, K., & Watanabe, G. (2020). Administration of melatonin improves testicular blood flow, circulating hormones, and semen quality in Shiba goats. Theriogenology, 146, 111-119.
  • Sanocka, D., & Kurpisz, M. (2004). Reactive oxygen species and sperm cells. Reproductive Biology and Endocrinology.2:12–26. https://doi.org/10.5772/intechopen.73037
  • Silva, S., Soares, A., Batista, A., Almeida, F., Nunes, J., Peixoto, C., & Guerra, M. (2011). In vitro and in vivo evaluation of ram sperm frozen in tris egg-yolk and supplemented with superoxide dismutase and reduced glutathione. Reprod. Domest. Anim. 46: 874-81. https://doi.org/10.1111/j.1439-0531.2011.01758.x.
  • Sönmez, M., Yüce, A., & Türk, G. (2007). The protective effects of melatonin and vitamin E on antioxidant enzyme activities and epididymal sperm characteristics of homocysteine treated male rats. Reprod. Toxicol. 23: 226-31. https://doi.org/10.1016/j.reprotox.2006.11.003.
  • Stradaioli, G., Noro, T., Sylla, L., & Monaci, M. (2007). Decrease in glutathione (GSH) content in bovine sperm after cryopreservation: comparison between two extenders. Theriogenology. 67:1249-55. https://doi.org/10.1016/j.theriogenology.2007.01.009
  • Tvrda, E., Lukáč, N., Jambor, T., Lukáčová, J., & Massányi, P. (2015). Curcumın In Male Fertility: Effects On Spermatozoa Vitality And Oxidative Balance. J Microbiol Biotech Food Sci / Tvrdá et al. 4: 120-124. https://doi.org/10.15414/jmbfs.2015.4.special2.120-124
  • Uysal, O., Kinet, H., Çevik, M. ve Çetinkaya, S. (2000). Fertility obtained from frozen ram semen with different extenders containing varied antioxidants. Journal of Ankara University Faculty of Veterinary Medicine. 47 (2), 177–189.
  • Wathes, D.C., Abayasekara, D.R., & Aitken, R.J. (2007). Polyunsaturated fatty acids in male and female reproduction. Biology of Reproduction. 77: 190-201. https://doi.org/10.1095/biolreprod.107.060558

Evaluation of Current Antioxidant Profile in Semen

Year 2021, Volume: 61 Issue: 1, 37 - 45, 01.07.2021
https://doi.org/10.46897/livestockstudies.610106

Abstract

The freezing and storage of the sperm are used cryopreservation of germplasm in livestock breeding, genetic improvement of indigenous species, preservation of rare races, successful tolerance to environmental changes and international germplasm exchanges. Both the freezing and thawing process causes large changes in the volume of the cell fluid. Spermatozoon removes most of its cytoplasm at differentiation stages and lacks the cytoplasmic component that contains antioxidants that counteract the harmful effect of reactive oxygen species and lipid peroxidation. Therefore, the sensitivity of spermatozoa to lipid peroxidation increases during the freezing and thawing of the sperm, which creates a significant mechanical stress on the cell membrane. Oxidative stress is caused by oxygen and oxygen-derived oxidants, commonly known as ROS, and is known as an imbalance between the ability of biological systems to easily detoxify or repair damaged reagents. Uncontrolled ROS production, which exceeds the antioxidant capacity of seminal plasma, causes oxidative stress that is harmful to spermatozoa. All cellular components, including lipids, proteins, nucleic acids, and sugars, are potential targets of oxidative stress. Antioxidants control the chemical degradation of the substrate caused by oxidation, neutralizing free radicals, thereby it is used to minimize the risk of damage to spermatozoa during cryopreservation.

References

  • Agarwal, A., & Majzoub, A. (2017). Role of antioxidants in Assisted Reproductive Techniques. World J. Mens. Health. 35: 77-93. https://doi.org/10.5534/wjmh.2017.35.2.77
  • Agarwal, A., Durairajanayagam, D., & Du Plessis, S. S. (2014). Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reproductive Biology and Endocrinology, 12(1), 1-19.
  • Agarwal, A., Makker, K., & Sharma, R. (2008). “Clinical relevance of oxidative stress in male factor infertility: an update,” American Journal of Reproductive Immunology. 59: 2–11. https://doi.org/10.1111/j.1600-0897.2007.00559.x
  • Aitken, R. J. (2017). Reactive oxygen species as mediators of sperm capacitation and pathological damage. Molecular reproduction and development, 84(10), 1039-1052. https://doi.org/10.1002/mrd.22871
  • Amidi, F., Pazhohan, A., Nashtaei, M.S., Khodarahmian, M., & Nekoonam, S. (2016). The role of antioxidants in sperm freezing: a review. Cell Tissue Bank. 31: 330-9. https://doi.org/10.1007/s10561-016-9566-5.
  • Andreea, A., & Stela, Z. (2010). Role of antioxidant additives in the protection of the cryopreserved semen against free radicals. Rom Biotechnol Lett. 15: 33-41.
  • Atmaca, G. (2004). Antioxidant effects of sulfur-containing amino acids. Yonsei Medical Journal. 45: 776-88. https://doi.org/10.3349/ymj.2004.45.5.776
  • Ball, B.A. (2008). Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse. Anim. Reprod. Sci. 107: 257-67. https://doi.org/10.1016/j.anireprosci.2008.04.014
  • Bansal, A.K., & Bilaspuri, G.S. (2010a) Impacts of Oxidative Stress and Antioxidants on Semen Functions. SAGE-Hindawi Access to Research Veterinary Medicine International. Volume 2011. https://doi.org/10.4061/2011/686137
  • Bansal, A.K., & Bilaspuri, G.S. (2010b). Effect of vitamin E and Mn2+ on the thiol status of cattle bull spermatozoa under induced oxidative stress. Animal Science Papers and Reports. 28: 335-45.
  • Bello, T.K., Oyelowo, B.B., Khumran, A.M., Hassan, R., Oke-Ebgodo, B.E., Idris, S.Y., Aliyu, M.A., & Maikaji, F. (2020). Antioxidative roles of Glutathione, Butylated Hydroxytoluene and Melatonin in semen preservation- A Review. Nig. J. Anim. Sci. Tech. 3(1): 130-9.
  • Bhattacharya, K., Sengupta, P., & Dutta, S. (2019). Role of melatonin in male reproduction. Asian Pacific Journal of Reproduction, 8(5), 211.
  • Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organ J. 5: 9-19. https://doi.org/10.1097/WOX.0b013e3182439613
  • Bollwein, H., & Bittner, L. (2018). Impacts of oxidative stress on bovine sperm function and subsequent in vitro embryo development. Anim. Reprod. 15: 703-10. http://dx.doi.org/10.21451/1984-3143-AR2018-0041
  • Bollwein, H., Fuchs, I., & Koess, C. (2008). Interrelationship between plasma membrane integrity, mitochondrial membrane potential and DNA fragmentation in cryopreserved bovine spermatozoa. Reprod Domest Anim. 43:189-95. https://doi.org/10.1111/j.1439-0531.2007.00876.x.
  • Bucak, M.N., Sarıozkan, S., Tuncer, P.B., Ateşşahin, A., Kulaksız, R., & Çevik, M. (2010). The effect of antioxidants on post-thawed Angora goat (Capra hircus ancryrensis) spermparameters, lipid peroxidation and antioxidant activities. Small Ruminant Research. 89, 24-30. https://doi.org/10.1016/j.smallrumres.2009.11.015
  • Cadet, J., Douki, T., Gasparutto, D., & Ravanat, J. (2003). Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res Mol Mech Mutagen. 531: 5-23. https://doi.org/10.1016/j.mrfmmm.2003.09.001
  • Çoyan, K., Bucak, M.N., Başpınar, N., Taşpınar, M., & Aydos, S. (2012). Ergothioneine attenuates the DNA damage of post-thawed Merino ram sperm. Small Rumin. Res. 106: 165-7. https://doi.org/10.1016/j.smallrumres.2012.02.002
  • Desai, N.R., Mahfouz, R., Sharma, R., Gupta, S., & Agarwal, A. (2010). Reactive oxygen species levels are independent of sperm concentration, motility, and abstinence in a normal, healthy, proven fertileman: a longitudinal study. FERTIL STERIL. 94: 1541-43. https://doi.org/10.1016/j.fertnstert.2009.12.041
  • Dorostkar, K., Alavi Shoushtari, S.M., & Khaki, A. (2014). Effects of in vitro zinc sulphate additive to the semen extender on water buffalo (Bubalus bubalis) spermatozoa before and after freezing. International Journal of Fertility & Sterility. 8(3): 325-32.
  • Dorostkar, K., Alavi-Shoushtari, S.M., & Mokarizadeh, A. (2012). Effects of in vitro selenium addition to the semen extender on the spermatozoa characteristics before and after freezing in water buffaloes (Bubalus bubalis). Veterinary Research Forum, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. 4: 263.
  • Drevet, J.R., & Aitken, R.J. (2020). Oxidation of Sperm Nucleus in Mammals: A Physiological Necessity to Some Extent with Adverse Impacts on Oocyte and Offspring. Antioxidants. 9: 95. https://doi.org/10.3390/antiox9020095
  • Falchia, L., Khalil, W.A., Hassan, M., & Marei, W.F.A. (2018). Perspectives of nanotechnology in male fertility and sperm function. International Journal of Veterinary Science and Medicine. 6: 265-69. https://doi.org/10.1016/j.ijvsm.2018.09.001
  • Farshad, A., Amidi, F., Khor, A.K., & Rashidi, A. (2011). Effect of Cholesterol-loaded cyclodextrin in presence and absence of egg yolk during freezing step on quality of Markhoz Buck’s Spermatozoa. Asian- Australasian Journal of Animal Science. 4: 181-9. https://doi.org/10.5713/ajas.2011.10141
  • Félix, F., Oliveira, C. C., & Cabrita, E. (2021). Antioxidants in Fish Sperm and the Potential Role of Melatonin. Antioxidants, 10(1), 36. https://doi.org/10.3390/antiox10010036
  • Gadea, J., Garcıa-Vazquez, F., Matas, C., Gardon, J.C., Canovas, S., & Gumbao, D. (2005) Cooling and freezing of boar spermatozoa: supplementation of the freezing media with reduced glutathione preserves sperm function. Journal of Andrology. 26: 396-404. https://doi.org/10.2164/jandrol.04155
  • Gonçalves, F., Barretto, L.S.S., Arruda, R.P., Perri, S.H.V., & Mingoti, G.Z. (2010). Effect of antioxidants during bovine in vitro fertilization procedures on spermatozoa and embryo development. Reproduction in Domestic Animals. 45: 129-35. https://doi.org/10.1111/j.1439-0531.2008.01272.x
  • Hezavehei, M., Sharafi, M., Kouchesfahani, H. M., Henkel, R., Agarwal, A., Esmaeili, V., & Shahverdi, A. (2018). Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reproductive Biomedicine Online, 37(3), 327-339. https://doi.org/10.1016/j.rbmo.2018.05.012
  • Hussain, M., Begum, S.S., Kalita, M.K., Ahmed, K.U., & Nath, R. (2018). Additives used in semen preservation in animals: A short review. International Journal of Chemical Studies. 6(5): 354-361.
  • Ifeanyi, O. E. (2018). A review on free radicals and antioxidants. Int. J. Curr. Res. Med. Sci, 4(2), 123-133.
  • Khan, I. M., Xu, D., Cao, Z., Liu, H., Khan, A., Rahman, S. U., & Zhang, Y. (2021). Addition of L-Cysteine and Vitamin E to Semen Diluent Enhances Freeze-thawed Spermatozoa Characteristics in Crossbred Cattle Bulls under Subtropical Environment. Pakistan Journal of Zoology. 1-11.
  • Kumar, T., Kumar, A., Swain, D.K., & Yadav, S. (2011). Influence of oral supplementation of Zinc and Selenium on post thaw semen quality of Barbari bucks. Journal of Animal Research. 1: 41-6.
  • Lambert, I.H., Pedersen, S.F., & Poulsen, K.A. (2006). Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxia. Acta Physiol. 187: 75-85. https://doi.org/10.1111/j.1748-1716.2006.01557.x
  • Martinez-Paramo, S., Diogo, P., Dinis, M., Herraez, M., Sarasquete, C., & Cabrita, E. (2012). Incorporation of ascorbic acid and atocopherol to the extender media to enhance antioxidant system of cryopreserved sea bass sperm. Theriogenology. 77: 1129-36. https://doi.org/10.1016/j.theriogenology.2011.10.017
  • McCarthy, M.J., Baumber, J., Kass, P.H., & Meyers, S.A. (2010). Osmotic stress induces oxidative cell damage to rhesus macaque spermatozoa. Biol. Reprod. 82:644-51. https://doi.org/10.1095/biolreprod.109.080507
  • Medrano, A., Contreras, C.F., Herrera, F.M., & Alcantar-Rodriguez, A.M. (2017). Melatonin as an antioxidant preserving sperm from domestic animals. Asian Pacific Journal of Reproduction. 6: 241-6. https://doi.org/10.4103/2305-0500.217317
  • Moazamian, R., Polhemus, A., Connaughton, H., Fraser, B., Whiting, S., Gharagozloo, P., & Aitken, R.J. (2015). Oxidative stress and human spermatozoa: diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. Mol Hum Reprod. 21: 502-15. https://doi.org/10.1093/molehr/gav014
  • Mora-Esteves, C., & Shin, D. (2013). Nutrient supplementation: improving male fertility fourfold. Seminars in Reproductive Medicine. 31: 293-300. https://doi.org/10.1055/s-0033-1345277
  • Ortiz, A., Espino, J., Bejarano, I., Lozano, G.M., Monllor, F., García, J.F., Pariente, J.A., & Rodríguez, A.B. (2010). High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. Journal of Pineal Research. 50: 132–139. https://doi.org/10.1111/j.1600-079X.2010.00822.x
  • Rocco, M., Betarelli, R., Placci, A., Fernández‐Novell, J. M., Spinaci, M., Casao, A., ... & Rodríguez‐Gil, J. E. (2018). Melatonin affects the motility and adhesiveness of in vitro capacitated boar spermatozoa via a mechanism that does not depend on intracellular ROS levels. Andrology, 6(5), 720-736.
  • Safa, S., Moghaddam, G., Jozani, R.J., Kia, H.D., & Janmohammadi, H. (2016). Effect of vitamin E and selenium nanoparticles on post-thaw variables and oxidative status of rooster semen. Animal Reproduction Science. 174:100-6. https://doi.org/10.1016/j.anireprosci.2016.09.011
  • Samir, H., Nyametease, P., Elbadawy, M., Nagaoka, K., Sasaki, K., & Watanabe, G. (2020). Administration of melatonin improves testicular blood flow, circulating hormones, and semen quality in Shiba goats. Theriogenology, 146, 111-119.
  • Sanocka, D., & Kurpisz, M. (2004). Reactive oxygen species and sperm cells. Reproductive Biology and Endocrinology.2:12–26. https://doi.org/10.5772/intechopen.73037
  • Silva, S., Soares, A., Batista, A., Almeida, F., Nunes, J., Peixoto, C., & Guerra, M. (2011). In vitro and in vivo evaluation of ram sperm frozen in tris egg-yolk and supplemented with superoxide dismutase and reduced glutathione. Reprod. Domest. Anim. 46: 874-81. https://doi.org/10.1111/j.1439-0531.2011.01758.x.
  • Sönmez, M., Yüce, A., & Türk, G. (2007). The protective effects of melatonin and vitamin E on antioxidant enzyme activities and epididymal sperm characteristics of homocysteine treated male rats. Reprod. Toxicol. 23: 226-31. https://doi.org/10.1016/j.reprotox.2006.11.003.
  • Stradaioli, G., Noro, T., Sylla, L., & Monaci, M. (2007). Decrease in glutathione (GSH) content in bovine sperm after cryopreservation: comparison between two extenders. Theriogenology. 67:1249-55. https://doi.org/10.1016/j.theriogenology.2007.01.009
  • Tvrda, E., Lukáč, N., Jambor, T., Lukáčová, J., & Massányi, P. (2015). Curcumın In Male Fertility: Effects On Spermatozoa Vitality And Oxidative Balance. J Microbiol Biotech Food Sci / Tvrdá et al. 4: 120-124. https://doi.org/10.15414/jmbfs.2015.4.special2.120-124
  • Uysal, O., Kinet, H., Çevik, M. ve Çetinkaya, S. (2000). Fertility obtained from frozen ram semen with different extenders containing varied antioxidants. Journal of Ankara University Faculty of Veterinary Medicine. 47 (2), 177–189.
  • Wathes, D.C., Abayasekara, D.R., & Aitken, R.J. (2007). Polyunsaturated fatty acids in male and female reproduction. Biology of Reproduction. 77: 190-201. https://doi.org/10.1095/biolreprod.107.060558
There are 49 citations in total.

Details

Primary Language English
Subjects Zootechny (Other)
Journal Section 61-1
Authors

Melih Akar This is me

Cumali Kaya

Mesut Çevik This is me

Publication Date July 1, 2021
Published in Issue Year 2021 Volume: 61 Issue: 1

Cite

APA Akar, M., Kaya, C., & Çevik, M. (2021). Evaluation of Current Antioxidant Profile in Semen. Livestock Studies, 61(1), 37-45. https://doi.org/10.46897/livestockstudies.610106
AMA Akar M, Kaya C, Çevik M. Evaluation of Current Antioxidant Profile in Semen. Livestock Studies. July 2021;61(1):37-45. doi:10.46897/livestockstudies.610106
Chicago Akar, Melih, Cumali Kaya, and Mesut Çevik. “Evaluation of Current Antioxidant Profile in Semen”. Livestock Studies 61, no. 1 (July 2021): 37-45. https://doi.org/10.46897/livestockstudies.610106.
EndNote Akar M, Kaya C, Çevik M (July 1, 2021) Evaluation of Current Antioxidant Profile in Semen. Livestock Studies 61 1 37–45.
IEEE M. Akar, C. Kaya, and M. Çevik, “Evaluation of Current Antioxidant Profile in Semen”, Livestock Studies, vol. 61, no. 1, pp. 37–45, 2021, doi: 10.46897/livestockstudies.610106.
ISNAD Akar, Melih et al. “Evaluation of Current Antioxidant Profile in Semen”. Livestock Studies 61/1 (July 2021), 37-45. https://doi.org/10.46897/livestockstudies.610106.
JAMA Akar M, Kaya C, Çevik M. Evaluation of Current Antioxidant Profile in Semen. Livestock Studies. 2021;61:37–45.
MLA Akar, Melih et al. “Evaluation of Current Antioxidant Profile in Semen”. Livestock Studies, vol. 61, no. 1, 2021, pp. 37-45, doi:10.46897/livestockstudies.610106.
Vancouver Akar M, Kaya C, Çevik M. Evaluation of Current Antioxidant Profile in Semen. Livestock Studies. 2021;61(1):37-45.