Araştırma Makalesi
BibTex RIS Kaynak Göster

Flood Analysis and Mapping Using Sentinel-1 Data: A Case Study from Tarsus Plain, Turkey

Yıl 2021, Cilt: 2 Sayı: 3, 35 - 49, 30.06.2021

Öz

Floods are natural disasters that corrupt vegetation, cause loss of lives, and harm economies. There are many cases floods originate, sometimes natural, sometimes man-made. The use of agricultural fields unconsciously, land cover modifications, incorrect city planning can be listed as unnatural reasons. Modeling and mapping the floods, real-time monitoring with satellite are cost-efficient ways of decreasing the causes of floods and helping the authorities to give the exact decisions during or after the event.
Synthetic-aperture radar (SAR) satellite imagery helps in monitoring disasters like flooding. The all-weather operating capability provides cloud-free day and night imagery, even in the worst weather conditions. In this paper, Sentinel-1 satellite imagery provided by European Space Agency (ESA) is used to investigate the flood event that happened in January 2020 in the Tarsus agricultural field (West Cukurova Region) of Mersin, Turkey. Sentinel-1 imagery for the nearest dates is collected, pre-processed, and thresholded with Otsu’s method and a flood map is obtained. Sentinel-2 satellite imagery for the same study area is used to verify the Sentinel-1 output composite. Spectral indices are applied on Sentinel-2 composite and classification is done with Random Forests, CART, Support Vector Machine (SVM) and Naive Bayes algorithms. Random Forest and SVM algorithms provided the best classification result. Finally, Sentinel-1 and Sentinel-2 products are overlaid as change management.

Destekleyen Kurum

Çanakkale Onsekiz Mart Üniversitesi BAP Birimi

Proje Numarası

FHD-2020-3448

Teşekkür

This study is supported by Çanakkale Onsekiz Mart University Scientific Research Projects Coordination Unit under grant number: FHD-2020-3448

Kaynakça

  • Bilici, Ö. E., Everest, A., 2017. 29 Aralik 2016 Mersin Selinin Meteorolojik Analizi Ve İklim Değişikliği Bağlantisi. Eastern Geographical Review, 22(38).
  • Breiman, L., 2001. Random forests. Machine learning, 45(1), 5-32.
  • Breiman, L., Friedman, J., Stone, C. J., Olshen, R. A., 1984. Classification and regression trees. CRC press.
  • Burges, C. J., 1998. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2), 121-167.
  • Ceylan, A., Kömüşcü, A. Ü., 2007. Meteorolojik karakterli doğal afetlerin uzun yıllar ve mevsimsel dağılımları. İklim Değişikliği ve Çevre, 1(1), 1-10.
  • Giustarini, L., Vernieuwe, H., Verwaeren, J., Chini, M., Hostache, R., Matgen, P., De Baets, B., 2015. Accounting for image uncertainty in SAR-based flood mapping. International journal of applied earth observation and geoinformation, 34, 70-77.
  • Giustarini, L., Hostache, R., Matgen, P., Schumann, G. J. P., Bates, P. D., Mason, D. C., 2012. A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE transactions on Geoscience and Remote Sensing, 51(4), 2417-2430.
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment.
  • Hardisky, M. A., Klemas, V., Smart, M., 1983. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of. Spartina alterniflora, 49, 77-83.
  • Huang, M., Yu, W., Zhu, D., 2012 August. An improved image segmentation algorithm based on the Otsu method. In 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (pp. 135-139). IEEE.
  • Kasif, S., Salzberg, S., Waltz, D., Rachlin, J., Aha, D. W., 1998. A probabilistic framework for memory-based reasoning. Artificial Intelligence, 104(1/2), 297–312
  • Mason, D. C., Davenport, I. J., Neal, J. C., Schumann, G. J. P., Bates, P. D., 2012. Near real-time flood detection in urban and rural areas using high-resolution synthetic aperture radar images. IEEE transactions on Geoscience and Remote Sensing, 50(8), 3041-3052.
  • McFeeters, S. K., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432.
  • Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.
  • Pekel, J. F., Cottam, A., Gorelick, N., Belward, A. S., 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418-422.
  • Rozalis, S., Morin, E., Yair, Y., Price, C., 2010. Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. Journal of hydrology, 394(1-2), 245-255.
  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication, 351(1974), 309.
  • Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing, 27(14), 3025-3033.
  • Wenqing, L. J. L., Jianzhuang, L., 1993. The Automatic thresholding of gray-level pictures via two-dimensional otsu method [J]. Acta Automatica Sinica, 1, 015.
  • Zhang, J., Hu, J., 2008 December. Image segmentation based on 2D Otsu method with histogram analysis. In 2008 international conference on computer science and software engineering (Vol. 6, pp. 105-108). IEEE.

Sentinel-1 Uydusu Kullanılarak Sel Analizi ve Haritalanması : Tarsus Ovası Çalışması

Yıl 2021, Cilt: 2 Sayı: 3, 35 - 49, 30.06.2021

Öz

Seller, bitki örtüsünü bozan, can kayıplarına neden olan ve ekonomilere zaran veren doğal afetlerdir. Bazen doğal bazen insan kaynaklı olacak şekilde selleri oluşturan pekçok sebep vardır. Doğal olmayan nedenlere tarım alanlarının bilinçsizce kullanılması, arazi örtüsü değişiklikleri, yanlış şehir planlaması gibi örnekler verilebilir. Selleri modellemek ve haritalamak, uydu ile gerçek zamanlı izleme, sellerin nedenlerini azaltmanın uygun maliyetli yollarıdır ve yetkililerin olay sırasında veya sonrasında doğru kararlar verebilmelerine yardımcı olmaktadır.
Sentetik açıklıklı radar (SAR) uydu görüntüleri, sel gibi afetlerin izlenmesine yardımcı olmaktadır. Tüm hava koşullarında çalışma özelliği, en kötü hava koşullarında bile bulutsuz gündüz ve gece görüntüleri sağlamaktadır. Bu makalede, Avrupa Uzay Ajansı (ESA) tarafından sağlanan Sentinel-1 uydu görüntüleri, Mersin ili Tarsus tarım alanlarında (Batı Çukurova Bölgesi) 2020 Ocak ayında meydana gelen sel olayını araştırmak için kullanılmıştır. En yakın tarihlere ait Sentinel-1 görüntüleri ön işlemden geçirilerek Otsu yöntemiyle eşiklenmiş ve taşkın haritası elde edilmiştir. Sentinel-1 çıktı kompozitini doğrulamak için aynı çalışma alanı için Sentinel-2 uydu görüntüleri kullanılmıştır. Spektral indisler Sentinel-2 kompoziti üzerine uygulanmış ve Random Forests, CART, Support Vector Machine (SVM) ve Naive Bayes algoritmaları ile sınıflandırma yapılmıştır. Random Forest ve SVM algoritmaları en iyi sınıflandırma sonucunu sağlamıştır. Son olarak, Sentinel-1 ve Sentinel-2 ürünleri üst üste yerleştirilerek değişiklik yönetimi yapılmıştır.

Proje Numarası

FHD-2020-3448

Kaynakça

  • Bilici, Ö. E., Everest, A., 2017. 29 Aralik 2016 Mersin Selinin Meteorolojik Analizi Ve İklim Değişikliği Bağlantisi. Eastern Geographical Review, 22(38).
  • Breiman, L., 2001. Random forests. Machine learning, 45(1), 5-32.
  • Breiman, L., Friedman, J., Stone, C. J., Olshen, R. A., 1984. Classification and regression trees. CRC press.
  • Burges, C. J., 1998. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2), 121-167.
  • Ceylan, A., Kömüşcü, A. Ü., 2007. Meteorolojik karakterli doğal afetlerin uzun yıllar ve mevsimsel dağılımları. İklim Değişikliği ve Çevre, 1(1), 1-10.
  • Giustarini, L., Vernieuwe, H., Verwaeren, J., Chini, M., Hostache, R., Matgen, P., De Baets, B., 2015. Accounting for image uncertainty in SAR-based flood mapping. International journal of applied earth observation and geoinformation, 34, 70-77.
  • Giustarini, L., Hostache, R., Matgen, P., Schumann, G. J. P., Bates, P. D., Mason, D. C., 2012. A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE transactions on Geoscience and Remote Sensing, 51(4), 2417-2430.
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment.
  • Hardisky, M. A., Klemas, V., Smart, M., 1983. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of. Spartina alterniflora, 49, 77-83.
  • Huang, M., Yu, W., Zhu, D., 2012 August. An improved image segmentation algorithm based on the Otsu method. In 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (pp. 135-139). IEEE.
  • Kasif, S., Salzberg, S., Waltz, D., Rachlin, J., Aha, D. W., 1998. A probabilistic framework for memory-based reasoning. Artificial Intelligence, 104(1/2), 297–312
  • Mason, D. C., Davenport, I. J., Neal, J. C., Schumann, G. J. P., Bates, P. D., 2012. Near real-time flood detection in urban and rural areas using high-resolution synthetic aperture radar images. IEEE transactions on Geoscience and Remote Sensing, 50(8), 3041-3052.
  • McFeeters, S. K., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432.
  • Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.
  • Pekel, J. F., Cottam, A., Gorelick, N., Belward, A. S., 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418-422.
  • Rozalis, S., Morin, E., Yair, Y., Price, C., 2010. Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. Journal of hydrology, 394(1-2), 245-255.
  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication, 351(1974), 309.
  • Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing, 27(14), 3025-3033.
  • Wenqing, L. J. L., Jianzhuang, L., 1993. The Automatic thresholding of gray-level pictures via two-dimensional otsu method [J]. Acta Automatica Sinica, 1, 015.
  • Zhang, J., Hu, J., 2008 December. Image segmentation based on 2D Otsu method with histogram analysis. In 2008 international conference on computer science and software engineering (Vol. 6, pp. 105-108). IEEE.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

R. Cüneyt Erenoğlu 0000-0002-8212-8379

Enis Arslan 0000-0002-2609-3925

Proje Numarası FHD-2020-3448
Yayımlanma Tarihi 30 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 3

Kaynak Göster

APA Erenoğlu, R. C., & Arslan, E. (2021). Flood Analysis and Mapping Using Sentinel-1 Data: A Case Study from Tarsus Plain, Turkey. Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi, 2(3), 35-49.

Lapseki MYO Uygulamalı Araştırmalar Dergisi ücretsizdir. Yayınlanacak makaleler için herhangi bir ücret talep edilmez