Araştırma Makalesi
BibTex RIS Kaynak Göster

ENDÜSTRİYEL ELEMENİN SAYISAL MODELLEMESİ (1. BÖLÜM): AEY MODELİNİN GELİŞTİRİLMESİ VE SINANMASI

Yıl 2019, Cilt: 58 Sayı: 1, 17 - 29, 01.03.2019
https://doi.org/10.30797/madencilik.537642

Öz

Eleme işlemi cevher hazırlama tesislerinde en yaygın kullanılan birim işlemlerden biridir. Taneli
malzemelerin hareketinin modellenmesi ve simülasyonu amacıyla Ayrık Elemanlar Yöntemi’nin
(AEY) cevher hazırlama alanında kullanımı özellikle 1990’lı yıllardan itibaren yaygınlaşmaya
başlamıştır. Pek çok birim işlemin (öğütme, stoklama, malzeme taşıma, manyetik ayırma vb.)
modellenmesinde başarıyla kullanılan AEY, çeşitli tasarım ve işlem değişkenlerinin etkilerini
sayısal olarak belirlenmesi ve işlemlerin optimize edilmesi çalışmalarında önemli katkılar
sağlamaktadır. Bununla beraber, ülkemizde bu yöntemin kullanıldığı az sayıda çalışmaya
rastlanmaktadır.
Bu çalışma kapsamında, AEY kullanılarak eleme işlemi modellenmektedir. Bu sayede, çeşitli
işletme ve tasarım değişkenlerinin eleme verimi ve elde edilen ürünlerin özellikleri üzerine
etkileri incelenmiştir. Ayrıca, pilot ölçekli bir endüstriyel elek ile eleme testleri gerçekleştirilerek,
simülasyonlardan elde edilen veriler ile aynı koşullarda pilot ölçekli testlerden elde edilen verilerin
karşılaştırılması sayesinde simülatörün tahmin gücü sınanmıştır. Elde edilen sonuçlar, simülasyon
sonuçlarının pilot ölçekli test sonuçları ile oldukça yüksek uyum sergilediğini göstermektedir.

Kaynakça

  • Aghlmandi Harzanagh, A., Orhan, E.C., Ergun, S.L., 2018. Discrete Element Modelling of Vibrating Screens. Miner. Eng., 121, 107-121.
  • Alkhaldi, H., Ergenzinger, C., Fleißner, F., Eberhard, P., 2008. Comparison Between Two Different Mesh Descriptions Used for Simulation of Sieving Processes. Granular Matter., 10 (3), 223-229.
  • Balevičius, R., Džiugys, A., Kačianauskas, R., Maknickas, A., Vislavičius, K., 2006. Investigation of Performance of Progrming Approaches and Languages used for Numerical Simulation of Granular Material by the Discrete Element Method. Computer Physics Communications, 175 (6), 404–415.
  • Cleary, P.W., 1998. Predicting Charge Motion, Power Draw, Segregation and Wear in Ball Mills Using Discrete Element Methods. Miner. Eng., 11, 1061–1080.
  • Cleary, P.W., Morrisson, R., Morrell, S., 2003. Comparison of DEM and Experiment for a Scale Model SAG Mill. Int. J. Miner. Process., 68, 129–165.
  • Cleary, P.W., Sinnott, M.D., Morrison, R.D., 2009. Separation Performance of Double Deck Banana Screens - Part 1: Flow and Separation for Different Accelerations. Miner. Eng., 22, 1218–1229.
  • Cundall, P.A., Strack, O.D.L., 1979. A Discrete Numerical Model for Granular Assemblies. Géotechnique, 29, 47–65.
  • Delaney, G.W., Morrison, R.D., Sinnott, M.D., Cummins, S., Cleary, P.W., 2015. DEM Modelling of Non-Spherical Particle Breakage and Flow in an Industrial Scale Cone Crusher. Miner. Eng., 74, 112–122.
  • Elskamp, F., Kruggel-Emden, H., 2014. Review and Benchmarking of Process Models for Batch Screening Based on Discrete Element Simulations. Adv. Powder Technol., 1–19.
  • Fernandez, J.W., Cleary, P.W., Sinnott, M.D., Morrison, R.D., 2011. Using SPH One-Way Coupled to DEM to Model Wet Industrial Banana Screens. Miner. Eng., 24, 741–753.
  • Gera, D., Gautam, M., Tsuji, Y., Kawaguchi, T., Tanaka, T., 1998. Computer Simulation of Bubbles in Large-Particle Fluidized Beds. Powder Technol., 98, 38–47.
  • Goniva, C., Kloss, C., Deen, N., Kuipers, J., Pirker, S., 2012. Influence of Rolling Friction on Single Spout Fluidized Bed Simulation. Particuology, 10 (5), 582-591.
  • Kuwabara, G., Kono, K., 1987. Restitution Coefficient in a Collision Between Two Spheres. Jpn. J. Appl. Phys., 26, 1230–1233.
  • LAMMPS, 2017. Large-scale Atomic/Molecular Massively Parallel Simulator Documentation. Bağlantı adresi: http://lammps.sandia.gov/doc/Manual.html (erişim tarihi: 10.04.2017).
  • Langston, P.A., Tüzün, U., Heyes, D.M., 1995. Discrete Element Simulation of Granular Flow in 2d and 3d Hoppers: Dependence of Discharge Rate and Wall Stress on Particle Interactions. Chem. Eng. Sci., 50, 967–987.
  • Liffman, K., Nguyen, M., Metcalfe, G., Cleary, P., 2001. Forces in Piles of Granular Material: An Analytic and 3D DEM Study. Granul. Matter, 3, 165–176.
  • Liu, C., Wang, H., Zhao, Y., Zhao, L., Dong, H., 2013. DEM Simulation of Particle Flow on a Single Deck Banana Screen. Int. J. Min. Sci. Technol., 23, 273–277.
  • Mio, H., Kano, J., Saito, F., Kaneko, K., 2002. Effects of Rotational Direction and Rotation-to-Revolution Speed Ratio in Planetary Ball Milling. Mater. Sci. Eng., 332, 75–80.
  • Mishra, B.K., Mehrotra, S.P., 2001. A Jig Model Based on the Discrete Element Method and its Experimental Validation. Int. J. Miner. Process., 63, 177–189.
  • Mishra, B.K., Rajamani, R.K., 1992. The Discrete Element Method for the Simulation of Ball Mills. Appl. Math. Model., 16, 598–604.
  • Mular, A.L., Halbe, D.N., Barratt, D.J., 2002. Mineral Processing Plant Design, Practice, and Control. SME, Vancouver, British Columbia.
  • Nesbit, P.Q., Moys, M.H., 1998. Load Behaviour in the Hicom Nutating Mill. Miner. Eng., 11, 979–988.
  • Orhan, E.C., 2008. Yüksek Alan Şiddetli Kalıcı Mıknatıslı Rulo Tipi Kuru Manyetik Ayırıcıların Ayrık Elemanlar Yöntemi ile Modellenmesi. Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü Maden Mühendisliği Bölümü.
  • Orhan, E.C., 2018. Endüstriyel Elemenin Sayısal Modellemesi. TÜBİTAK, Proje No: 215M368, Ankara.
  • Sinnott, M.D., Cleary, P.W., Morrison, R.D., 2011. Is Media Shape Important for Grinding Performance in Stirred Mills?. Miner. Eng., 24, 138–151.
  • Ting, J.M., Corkum, B.T., 1992. Computational Laboratory for Discrete Element Geomechanics. J. Comput. Civ. Eng., 6, 129–146.
  • Tung, K.L., Chang, T.H., Lin, Y.-F., Chyang, C.-S., 2011. DEM Simulation of a 3D Vertical Vibratory Screening Process: The Study of a Simulated Woven-Mesh Structure. AIChE J., 57, 918–928.
  • Xiao, J., Tong, X., 2012. Particle Stratification and Penetration of a Linear Vibrating Screen by the Discrete Element Method. Int. J. Min. Sci. Technol., 22, 357– 362.
  • Yang, R.Y., Zou, R.P., Yu, A.B., 2003. Microdynamic Analysis of Particle Flow in a Horizontal Rotating Drum. Powder Technol., 130, 138–146.
  • Yokoyama, T., Tamura, K., Usui, H., Jimbo, G., 1996. Simulation of Ball Behavior in a Vibration Mill in Relation With its Grinding Rate: Effects of Fractional Ball Filling and Liquid Viscosity. Int. J. Miner. Process., 44–45, 413–424.
  • Zhang, D., Whiten, W. J., 1996. The Calculation of Contact Forces Between Particles Using Spring and Damping Models. Powder Technology, 88 (1), 59-64.
  • Zhao, L., Zhao, Y., Liu, C., Li, J., Dong, H., 2011. Simulation of the Screening Process on a Circularly Vibrating Screen Using 3D-DEM. Min. Sci. Technol., 21, 677–680.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

E. Caner Orhan Bu kişi benim 0000-0003-2741-0782

Ahad Aghlmandi Harzanagh Bu kişi benim 0000-0003-3475-7338

Ş. Levent Ergün 0000-0002-6500-7540

Yayımlanma Tarihi 1 Mart 2019
Gönderilme Tarihi 16 Ağustos 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 58 Sayı: 1

Kaynak Göster

APA Orhan, E. C., Harzanagh, A. A., & Ergün, Ş. L. (2019). ENDÜSTRİYEL ELEMENİN SAYISAL MODELLEMESİ (1. BÖLÜM): AEY MODELİNİN GELİŞTİRİLMESİ VE SINANMASI. Bilimsel Madencilik Dergisi, 58(1), 17-29. https://doi.org/10.30797/madencilik.537642
AMA Orhan EC, Harzanagh AA, Ergün ŞL. ENDÜSTRİYEL ELEMENİN SAYISAL MODELLEMESİ (1. BÖLÜM): AEY MODELİNİN GELİŞTİRİLMESİ VE SINANMASI. Madencilik. Mart 2019;58(1):17-29. doi:10.30797/madencilik.537642
Chicago Orhan, E. Caner, Ahad Aghlmandi Harzanagh, ve Ş. Levent Ergün. “ENDÜSTRİYEL ELEMENİN SAYISAL MODELLEMESİ (1. BÖLÜM): AEY MODELİNİN GELİŞTİRİLMESİ VE SINANMASI”. Bilimsel Madencilik Dergisi 58, sy. 1 (Mart 2019): 17-29. https://doi.org/10.30797/madencilik.537642.
EndNote Orhan EC, Harzanagh AA, Ergün ŞL (01 Mart 2019) ENDÜSTRİYEL ELEMENİN SAYISAL MODELLEMESİ (1. BÖLÜM): AEY MODELİNİN GELİŞTİRİLMESİ VE SINANMASI. Bilimsel Madencilik Dergisi 58 1 17–29.
IEEE E. C. Orhan, A. A. Harzanagh, ve Ş. L. Ergün, “ENDÜSTRİYEL ELEMENİN SAYISAL MODELLEMESİ (1. BÖLÜM): AEY MODELİNİN GELİŞTİRİLMESİ VE SINANMASI”, Madencilik, c. 58, sy. 1, ss. 17–29, 2019, doi: 10.30797/madencilik.537642.
ISNAD Orhan, E. Caner vd. “ENDÜSTRİYEL ELEMENİN SAYISAL MODELLEMESİ (1. BÖLÜM): AEY MODELİNİN GELİŞTİRİLMESİ VE SINANMASI”. Bilimsel Madencilik Dergisi 58/1 (Mart 2019), 17-29. https://doi.org/10.30797/madencilik.537642.
JAMA Orhan EC, Harzanagh AA, Ergün ŞL. ENDÜSTRİYEL ELEMENİN SAYISAL MODELLEMESİ (1. BÖLÜM): AEY MODELİNİN GELİŞTİRİLMESİ VE SINANMASI. Madencilik. 2019;58:17–29.
MLA Orhan, E. Caner vd. “ENDÜSTRİYEL ELEMENİN SAYISAL MODELLEMESİ (1. BÖLÜM): AEY MODELİNİN GELİŞTİRİLMESİ VE SINANMASI”. Bilimsel Madencilik Dergisi, c. 58, sy. 1, 2019, ss. 17-29, doi:10.30797/madencilik.537642.
Vancouver Orhan EC, Harzanagh AA, Ergün ŞL. ENDÜSTRİYEL ELEMENİN SAYISAL MODELLEMESİ (1. BÖLÜM): AEY MODELİNİN GELİŞTİRİLMESİ VE SINANMASI. Madencilik. 2019;58(1):17-29.

22562 22561 22560 22590 22558