Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 63 Sayı: 1, 31 - 40, 10.09.2024
https://doi.org/10.30797/madencilik.1404703

Öz

Kaynakça

  • References
  • Abbott, J. and Miles, N.J., 1991. Smoothing and interpolation of float/sink data for coals. Minerals Eng., Vol.4, No.(3/4), pp. 511-524.
  • Aktaş, Z., 1993. The absorption behavior of non-ionic reagent on two low rank British coals and their influence on the froth structure and flotation performance. Ph.D. thesis, Victoria U. of Manchester, UK.
  • Aktaş, Z. and Woodburn, E. T., 1995. The effect of non-ionic reagent adsorption on the froth structure and flotation performance of two low rank British coals. Powder Technology, Vol. 83, pp. 149-158.
  • Aktaş, Z., Karacan, F. and Olcay, A., 1998. Centrifugal float-sink separation of fine Turkish coals in dense media. Fuel Processing Tech., Vol. 55 pp. 235-250.
  • Aktaş, Z., 2002. Some factors affecting spherical oil agglomeration performance of coal fines. International Journal of Mineral Processing 65: 177–190.
  • Alonso, M., A. Valdés, R. Martınez-Tarazona, and A. Garcia. 2002. Coal recovery from fines cleaning wastes by agglomeration with colza oil: A contribution to the environment and energy preservation. Fuel Processing Technology 75: 85–95.
  • Arbiter, N., editor. 1985. SME Mineral Processing Handbook Section 5, Flotation. New York: AIME. Aslan, N., and İ. Ünal. 2011. Multi-response optimization of oil agglomeration with multiple performance characteristics. Fuel Processing Technology 92: 1157–1163.
  • Bhattacharyya, R., A. Moza, and G. Sarkar. 1977. Role of operating variables in oil-agglomeration of coal. In Agglomeration 77 (K. V. S. Sastry, ed.), pp. 931–938, Vol. 77. New York: American Institute of Mining, Metallurgical, and Petroleum Engineers.
  • Butler, J.N. 1964. Ionic Equilibrium. Reading: Addison-Wesley, p. 173.
  • Capes, C. E., and K. Darcovich. 1984. A survey of oil agglomeration in wet fine coal processing. Powder Technology 40: 43–52.
  • Capes, C. 1991. Oil agglomeration process principles and commercial application for fine coal cleaning. Coal Preparation 4: 1021–1029.
  • Capes, C., and R. Germain. 1982. Selective oil agglomeration in fine coal beneficiation. In Physical cleaning of coal, (Y. A. Liu, ed.), pp. 293–351. New York: Marcel Decker.
  • Cebeci, Y., 2003. Investigation of kinetics of agglomerate growth in oil agglomeration process. Fuel 82: 1645–1651. Cebeci, Y., and İ. Sönmez. 2002. The investigation of coal–pyrite/lignite concentration and their separation in the artificial mixture by oil agglomeration. Fuel 81: 1139–1146.
  • Cebeci, Y., and İ. Sönmez. 2006. Application of the Box-Wilson experimental design method for the spherical oil agglomeration of coal. Fuel 85: 289–297.
  • Chary, G., and M. Dastidar. 2010. Optimization of experimental conditions for recovery of coking coal fines by oil agglomeration technique. Fuel 89: 2317–2322.
  • Chary, G., and M. Dastidar. 2013. Comprehensive study of process parameters affecting oil agglomeration using vegetable oils. Fuel 106: 285–292.
  • Coleman, R. D., B. D. Sparks, A. Majid, and F. N. Toll. 1995. Agglomeration-flotation: Recovery of hydrophobic components from oil sands fine tailings. Fuel 74: 1156–1161.
  • Çelik, H. 2002. “İnce Kömürlerin Temizlenmesinde Köpük Flotasyonu ve Ağır Ortam Siklonlarının Entegrasyonu”, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, İzmir.
  • Çelik, H. 2006. İnce Kömürlerin Temizlenmesinde Köpük Flotasyonu ve Ağır Ortam Siklonlarının Entegrasyonu, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 8 (2), 93-106.
  • Darcovich, K., C. E. Capes, and F. D. F. Talbot. 1989. Surface characteristics of coal-oil agglomerates in the floc regime. Energy & Fuels 3, 64–70.
  • Duzyol, S. 2015. Investigation of oil agglomeration behaviour of Tuncbilek clean coal and separation of artificial mixture of coal–clay by oil agglomeration. Powder Technology 274: 1–4.
  • Fan, C., Markuszewski, R., & Wheelock, T. 1988. Oil agglomeration of coal in salt solutions: Effects of hydrophobicity and other parameters on coal recovery. Environmental Science, Chemistry Fuerstenau, M. C., Palmer, B. R. 1976. Flotation of oxides and silicates, Flotation, A.M. Gaudin Memorial Volume, I. New York: AIME, p. 148.
  • Fuerstenau, D. W., Rosenbaum, J. M., Laskowski, J. 1983. Effect of surface functional groups on the flotation of coal. Coll Surf 8:153–74.
  • Frederick, M. F. 1964. Contact angle, wettability, and adhesion, Vol. 43. Washington, DC: American Chemical Society.
  • Flynn, S. A. and Woodburn, E. T., 1987. A froth ultra-fine model for the selective separation of coal from mineral in a dispersed air flotation cell. Powder Tech., Vol. 49, pp. 127-142.
  • Garcia, A. B., J. G. Vega, and M. R. Martinez-Tarazona. 1995. Effects of oil concentration and particle size on the cleaning of Spanish high-rank coals by agglomeration with n-heptane. Fuel 74: 1692–1697.
  • Garcia, A. B., M. R. Martínez-Tarazona, J. G. Vega, and T. D. Wheelock. 1998. On the role of oil wetting in the cleaning of high rank coals by agglomeration. Fuel 77: 387–392.
  • Gence, N. 2006. Coal recovery from bituminous coal by aggloflotation with petroleum oils. Fuel 85: 1138–1142.
  • Guerra, E.A., Rubio, J., Solari J.A., 1986. A Comparative Study Of Oil Based Beneficiation Processes Of Ultrafine Brazilian Coals, 10° International Coal Preparation Congress, pp.105-120.
  • Gülşuna, G., 2007. Linyit Kömürü Ara Ürününün Flotasyon İle Zenginleştirmesinin Araştırılması, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Maden Mühendisliği Anabilim Dalı.
  • Gutierrez-Rodriguez, J., and F. Aplan. 1984. The effect of oxygen on the hydrophobicity and floatability of coal. Colloids and Surfaces 12: 27–51.
  • Hacıfazlıoğlu, H., 2008. Azdavay Kömürünün Yağ Aglomerasyonu ve Bazı Önemli Çalışma Parametrelerinin Etkilerinin Belirlenmesi, Madencilik, Cilt 47, Sayı 4, 3-11.
  • Hacıfazlıoğlu, H., 2013. İnce Kömür Zenginleştirme Teknolojisindeki Yenilikler ve Çift Tamburlu Ayırıcı (ÇTA)’ nın Endüstriyel Uygulaması, Nevşehir Bilim ve Teknoloji Dergisi Cilt 2(2) 109-119.
  • Hazra, S.K. ve diğ., 1986. "Studies on the Performance of an Oil Agglomeration Process Evaluated From Bench-scale Batch and Continuous Operations with Critical Variables", CIM 10th Int. Coal Prep. Congr., Edmonton, Canada, s. 163-177.
  • Hoşten, Ç., Uçbaş, Y., 1989. Zonguldak Taşkömürleri Üzerinde Yağ Aglomerasyonu Çalışmaları, Türkiye Madencilik Bilimsel Ve Teknik 11.Kongresi, ss.355-364.
  • Keller, D. V., Jr., and W. Burry. 1987. An investigation of a separation process involving liquid–water–coal systems. Colloids and Surfaces 22: 37–50.
  • Kemal, M., Arslan, V., 2000. Toz Kömürlerin Değerlendirilmesinde Yeni Teknolojiler, V. Kömür Teknolojisi Ve Kullanım Semineri.
  • Kılınç, E., 2000. Toz Kömürlerin Yağ Aglomerasyonu ile Zenginleştirilmesi, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Kılınç Aksay, E., Arslan, V., Polat, H., 2010. Toz Kömürlerin Zenginleştirilmesinde Yağ Aglomerasyonu Yöntemi ve Yenilikler, İstanbul Yerbilimleri Dergisi, 23, 2, 97–108.
  • Kumar, S., G. Chary, and M. Dastidar. 2015. Optimization studies on coal–oil agglomeration using Taguchi (L16) experimental design. Fuel 141: 9–16.
  • Langmuir, D. 1969. Professional paper. US Geol Surv 650-B:181.
  • Laskowski, J., and G. Parfitt. 1989. Electrokinetics of coal-water suspensions. In Interfacial Phenomena in Coal Technology (G. D. Botsaris and Y. M. Glazman, eds.), pp. 279–327. New York: Marcel Decker Inc.
  • Laskowski, J.S., Parfitt, G.D., 1988. Interfacial Phenomena in Coal Technology, Vol.32 pp.280-323.
  • Laskowski, S. J., Yu, Z. M., 2000. Oil Agglomeration and Its Effect on Beneficiation and Filtration of Low-Rank/Oxidized Coals, International Journal of Mineral Processing 58, 237-252.
  • Mehrotra, V., K. Sastry, and B. Morey. 1983. Review of oil agglomeration techniques for processing of fine coals. International Journal of Mineral Processing 11: 175–201.
  • Mustafa Özer, Omar M. Basha & Badie Morsi (2017) Coal-Agglomeration Processes: A Review, International Journal of Coal Preparation and Utilization, 37:3, 131-167. https://doi.org/10.1080/19392699.2016.1142443 Nicol, S. K., and A. R. Swanson. 1980. Oil in water emulsion for agglomeration of coal fines. Patent US4209301 A. File date May 8, 1978, Issue date June 24, 1980.
  • Osborne, D. 1988. Flotation, agglomeration and selective flocculation. Coal preparation Technology 1: 415–477.
  • Özbayoğlu, G. and Mamurekli, M., 1994. Super-clean coal production from Turkish bituminous coal, Fuel, Vol. 73, pp. 1221-1223.
  • Özer, Mustafa, Basha, Omar M., Morsi, Badie, 2017. Coal-Agglomeration Processes: A Review, International Journal of Coal Preparation and Utilization, 37:3, 131-167. https://doi.org/10.1080/19392699.2016.1142443 Petela, R. 1991. Prediction of the product size in the agglomeration of coal particles in a water-oil emulsion. Fuel 70: 509–517.
  • Shrauti, S. M., and D. W. Arnold. 1995. Recovery of waste fine coal by oil agglomeration. Fuel 74: 459–465. Şahinoğlu, E. ve Uslu, T., 2008. Amenability of Muzret Bituminous Coal to Oil Agglomeration, Energy Conversion and Management, 49, 12, 3684-3690.
  • Slaghuis, J. H., and L. C. Ferreira. 1987. Selective spherical agglomeration of coal: An amended mechanism of agglomerate formation and growth and its effect on product quality. Fuel 66: 1427–1430.
  • Shukla, D. and Venugopal, R., 2019. Optimization of the process parameters for fine coal–oil agglomeration process using waste mustard oil. Powder Technology, 346, 316-325.
  • Steedman, W. G., and S. V. Krishnan, 1987. Oil agglomeration process for the treatment of fine coal. In Fine Coal Processing, 179–204. Park Ridge, NJ: Noyes Publications.
  • Stockton, J.B., 1989. The effect of froth structures on flotation kinetics and selectivity, Ph.D. thesis, Victoria University of Manchester (UMIST, Chem. Eng. Dep.), Manchester, UK.
  • Talbot, F. D. F., Capes, C. E., Darcovich, K., 1989. Surface characteristics of coal-oil agglomerates in the floc regime. Energy & Fuels 3, 64–70.
  • Toll, F. N., Coleman, R. D., Sparks, B. D., Majid, A., 1995. Agglomeration-flotation: Recovery of hydrophobic components from oil sands fine tailings. Fuel 74, 1156–1161.
  • Uçbaş, Y., Öteyaka, B. ve Özdağ, H., 1997. Manyezit Cevherinin Yağ Aglomerasyonu İle Zenginleştirilmesinde Bazı Proses Değişkenlerinin Aglomerat Boyutu ve Proses Verimi Üzerine Etkisi. Türkiye 15. Madencilik Kongresi, Ankara, 383-388.
  • Ulusoy, U., Cebeci, Y., Şimşek, S., 2002. Investigation of the effect of agglomeration time, pH and various salts on the cleaning of Zonguldak bituminous coal by oil agglomeration. Fuel 81, 1131–1137.
  • Ünal, İ., Aktaş, Z., Olcay, A., 2000. Bitümlü Kömür ve Linyitin Yağ Aglomerasyonu, Türkiye 12. Kömür Kongresi Bildiriler Kitabı, Zonguldak.
  • Ünal, İ., Erşan, G. M., 2007. Factors Affecting The Oil Aglomeration of Sivas-Divriği-Uluçayır Lignite, Energy Sources, 29, Part A, 983–993.
  • Uslu, T., Şahinoğlu, E., 2010. Atık Yağların Kömürün Temizlenmesinde Kullanımı ve Türkiye'deki Potansiyel. Madencilik Türkiye (Madencilik ve Yer Bilimleri Dergisi), cilt.1, sa.5, ss.30-34.
  • Venugopal, R., Shukla, D., 2019. Optimization of the process parameters for fine coal–oil agglomeration process using waste mustard oil. Powder Technology, 346, 316-325.
  • Wagman, D. D., 1969. NBS technical note 270-4.
  • Wen WW, Sun SC, 1981. An electrokinetic study on the oil flotation of oxidized coal. Sep Sci Technol 16, 1491–521.
  • Woodburn, E. T., Flynn, S. A., 1987. A froth ultra-fine model for the selective separation of coal from mineral in a dispersed air flotation cell. Powder Tech., Vol. 49, pp. 127-142.
  • Yüce, vd., 2009. Kömür Yıkama Tesislerinde Ağır Ortam Kayıplarının Nedenleri –Eski Çeltek Kömür Yıkama Tesisinin Analizi. 21. Uluslararası Madencilik Kongresi ve Sergisi, Antalya. Yamık, A., Tosun, Y. İ., Güneş, N., 1994. Kömürden Külün ve Kükürdün Arındırılması, Türkiye 9. Kömür Kongresi, Zonguldak, 201-210. Yang, G. C. C., Markuszewski, R., & Wheelock, T. D. 1987. Oil Agglomeration of Coal in Inorganic Salt Solutions. Pages 133-146. Received 12 Nov 1986, Accepted 09 Mar 1987, Published online: 27 Apr 2007. [https://doi.org/10.1080/07349348808945562] Yu, Z., 1998. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal. Vancouver, Canada: University of British Columbia.

Oil Agglomeration in Zonguldak Bituminous Coal Dust: The Role of Inorganic Materials

Yıl 2024, Cilt: 63 Sayı: 1, 31 - 40, 10.09.2024
https://doi.org/10.30797/madencilik.1404703

Öz

In the present study, the effect of various The oil agglomeration method is of great importance for high recovery and low cost in capitalizing our energy resources that create environmental problems due to fineness of particle size or our low quality, oxidized coal resources with large reserves. Inorganic pretreatment materials, the ratio of bridging liquid, agglomeration time and mixing speed on the agglomeration recovery in the beneficiation of Zonguldak coal with low ash content (2.23%) through oil agglomeration. In the experiments, kerosene was used as the bridging liquid and NaCl, FeCl2, Fe2(SO4)3, Al2(SO4)3 were used as inorganic pretreatment materials. In the agglomeration experiments in which inorganic pretreatment materials and kerosene were used together, the maximum recovery was determined in the condition where the kerosene concentration was 15%, the mixing speed was 800 rpm and the agglomeration time was 10 min. It was found that, the recovery under suitable conditions was 71.5% in the agglomeration experiments conducted with only kerosene, whereas it was in varying rates between 76.5% and 81.6% in experiments where pretreatment materials and kerosene were used together. Among the inorganic pretreatment materials, when used together with kerosene, the best recovery was obtained with the use of 50 mg/L Fe2(SO4)3. The agglomeration recovery obtained in the experiments conducted with only kerosene under optimum conditions was reached when the agglomeration time was 5 min in the experiments in which the inorganic pretreatment materials and kerosene were used together.

Kaynakça

  • References
  • Abbott, J. and Miles, N.J., 1991. Smoothing and interpolation of float/sink data for coals. Minerals Eng., Vol.4, No.(3/4), pp. 511-524.
  • Aktaş, Z., 1993. The absorption behavior of non-ionic reagent on two low rank British coals and their influence on the froth structure and flotation performance. Ph.D. thesis, Victoria U. of Manchester, UK.
  • Aktaş, Z. and Woodburn, E. T., 1995. The effect of non-ionic reagent adsorption on the froth structure and flotation performance of two low rank British coals. Powder Technology, Vol. 83, pp. 149-158.
  • Aktaş, Z., Karacan, F. and Olcay, A., 1998. Centrifugal float-sink separation of fine Turkish coals in dense media. Fuel Processing Tech., Vol. 55 pp. 235-250.
  • Aktaş, Z., 2002. Some factors affecting spherical oil agglomeration performance of coal fines. International Journal of Mineral Processing 65: 177–190.
  • Alonso, M., A. Valdés, R. Martınez-Tarazona, and A. Garcia. 2002. Coal recovery from fines cleaning wastes by agglomeration with colza oil: A contribution to the environment and energy preservation. Fuel Processing Technology 75: 85–95.
  • Arbiter, N., editor. 1985. SME Mineral Processing Handbook Section 5, Flotation. New York: AIME. Aslan, N., and İ. Ünal. 2011. Multi-response optimization of oil agglomeration with multiple performance characteristics. Fuel Processing Technology 92: 1157–1163.
  • Bhattacharyya, R., A. Moza, and G. Sarkar. 1977. Role of operating variables in oil-agglomeration of coal. In Agglomeration 77 (K. V. S. Sastry, ed.), pp. 931–938, Vol. 77. New York: American Institute of Mining, Metallurgical, and Petroleum Engineers.
  • Butler, J.N. 1964. Ionic Equilibrium. Reading: Addison-Wesley, p. 173.
  • Capes, C. E., and K. Darcovich. 1984. A survey of oil agglomeration in wet fine coal processing. Powder Technology 40: 43–52.
  • Capes, C. 1991. Oil agglomeration process principles and commercial application for fine coal cleaning. Coal Preparation 4: 1021–1029.
  • Capes, C., and R. Germain. 1982. Selective oil agglomeration in fine coal beneficiation. In Physical cleaning of coal, (Y. A. Liu, ed.), pp. 293–351. New York: Marcel Decker.
  • Cebeci, Y., 2003. Investigation of kinetics of agglomerate growth in oil agglomeration process. Fuel 82: 1645–1651. Cebeci, Y., and İ. Sönmez. 2002. The investigation of coal–pyrite/lignite concentration and their separation in the artificial mixture by oil agglomeration. Fuel 81: 1139–1146.
  • Cebeci, Y., and İ. Sönmez. 2006. Application of the Box-Wilson experimental design method for the spherical oil agglomeration of coal. Fuel 85: 289–297.
  • Chary, G., and M. Dastidar. 2010. Optimization of experimental conditions for recovery of coking coal fines by oil agglomeration technique. Fuel 89: 2317–2322.
  • Chary, G., and M. Dastidar. 2013. Comprehensive study of process parameters affecting oil agglomeration using vegetable oils. Fuel 106: 285–292.
  • Coleman, R. D., B. D. Sparks, A. Majid, and F. N. Toll. 1995. Agglomeration-flotation: Recovery of hydrophobic components from oil sands fine tailings. Fuel 74: 1156–1161.
  • Çelik, H. 2002. “İnce Kömürlerin Temizlenmesinde Köpük Flotasyonu ve Ağır Ortam Siklonlarının Entegrasyonu”, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, İzmir.
  • Çelik, H. 2006. İnce Kömürlerin Temizlenmesinde Köpük Flotasyonu ve Ağır Ortam Siklonlarının Entegrasyonu, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 8 (2), 93-106.
  • Darcovich, K., C. E. Capes, and F. D. F. Talbot. 1989. Surface characteristics of coal-oil agglomerates in the floc regime. Energy & Fuels 3, 64–70.
  • Duzyol, S. 2015. Investigation of oil agglomeration behaviour of Tuncbilek clean coal and separation of artificial mixture of coal–clay by oil agglomeration. Powder Technology 274: 1–4.
  • Fan, C., Markuszewski, R., & Wheelock, T. 1988. Oil agglomeration of coal in salt solutions: Effects of hydrophobicity and other parameters on coal recovery. Environmental Science, Chemistry Fuerstenau, M. C., Palmer, B. R. 1976. Flotation of oxides and silicates, Flotation, A.M. Gaudin Memorial Volume, I. New York: AIME, p. 148.
  • Fuerstenau, D. W., Rosenbaum, J. M., Laskowski, J. 1983. Effect of surface functional groups on the flotation of coal. Coll Surf 8:153–74.
  • Frederick, M. F. 1964. Contact angle, wettability, and adhesion, Vol. 43. Washington, DC: American Chemical Society.
  • Flynn, S. A. and Woodburn, E. T., 1987. A froth ultra-fine model for the selective separation of coal from mineral in a dispersed air flotation cell. Powder Tech., Vol. 49, pp. 127-142.
  • Garcia, A. B., J. G. Vega, and M. R. Martinez-Tarazona. 1995. Effects of oil concentration and particle size on the cleaning of Spanish high-rank coals by agglomeration with n-heptane. Fuel 74: 1692–1697.
  • Garcia, A. B., M. R. Martínez-Tarazona, J. G. Vega, and T. D. Wheelock. 1998. On the role of oil wetting in the cleaning of high rank coals by agglomeration. Fuel 77: 387–392.
  • Gence, N. 2006. Coal recovery from bituminous coal by aggloflotation with petroleum oils. Fuel 85: 1138–1142.
  • Guerra, E.A., Rubio, J., Solari J.A., 1986. A Comparative Study Of Oil Based Beneficiation Processes Of Ultrafine Brazilian Coals, 10° International Coal Preparation Congress, pp.105-120.
  • Gülşuna, G., 2007. Linyit Kömürü Ara Ürününün Flotasyon İle Zenginleştirmesinin Araştırılması, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Maden Mühendisliği Anabilim Dalı.
  • Gutierrez-Rodriguez, J., and F. Aplan. 1984. The effect of oxygen on the hydrophobicity and floatability of coal. Colloids and Surfaces 12: 27–51.
  • Hacıfazlıoğlu, H., 2008. Azdavay Kömürünün Yağ Aglomerasyonu ve Bazı Önemli Çalışma Parametrelerinin Etkilerinin Belirlenmesi, Madencilik, Cilt 47, Sayı 4, 3-11.
  • Hacıfazlıoğlu, H., 2013. İnce Kömür Zenginleştirme Teknolojisindeki Yenilikler ve Çift Tamburlu Ayırıcı (ÇTA)’ nın Endüstriyel Uygulaması, Nevşehir Bilim ve Teknoloji Dergisi Cilt 2(2) 109-119.
  • Hazra, S.K. ve diğ., 1986. "Studies on the Performance of an Oil Agglomeration Process Evaluated From Bench-scale Batch and Continuous Operations with Critical Variables", CIM 10th Int. Coal Prep. Congr., Edmonton, Canada, s. 163-177.
  • Hoşten, Ç., Uçbaş, Y., 1989. Zonguldak Taşkömürleri Üzerinde Yağ Aglomerasyonu Çalışmaları, Türkiye Madencilik Bilimsel Ve Teknik 11.Kongresi, ss.355-364.
  • Keller, D. V., Jr., and W. Burry. 1987. An investigation of a separation process involving liquid–water–coal systems. Colloids and Surfaces 22: 37–50.
  • Kemal, M., Arslan, V., 2000. Toz Kömürlerin Değerlendirilmesinde Yeni Teknolojiler, V. Kömür Teknolojisi Ve Kullanım Semineri.
  • Kılınç, E., 2000. Toz Kömürlerin Yağ Aglomerasyonu ile Zenginleştirilmesi, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Kılınç Aksay, E., Arslan, V., Polat, H., 2010. Toz Kömürlerin Zenginleştirilmesinde Yağ Aglomerasyonu Yöntemi ve Yenilikler, İstanbul Yerbilimleri Dergisi, 23, 2, 97–108.
  • Kumar, S., G. Chary, and M. Dastidar. 2015. Optimization studies on coal–oil agglomeration using Taguchi (L16) experimental design. Fuel 141: 9–16.
  • Langmuir, D. 1969. Professional paper. US Geol Surv 650-B:181.
  • Laskowski, J., and G. Parfitt. 1989. Electrokinetics of coal-water suspensions. In Interfacial Phenomena in Coal Technology (G. D. Botsaris and Y. M. Glazman, eds.), pp. 279–327. New York: Marcel Decker Inc.
  • Laskowski, J.S., Parfitt, G.D., 1988. Interfacial Phenomena in Coal Technology, Vol.32 pp.280-323.
  • Laskowski, S. J., Yu, Z. M., 2000. Oil Agglomeration and Its Effect on Beneficiation and Filtration of Low-Rank/Oxidized Coals, International Journal of Mineral Processing 58, 237-252.
  • Mehrotra, V., K. Sastry, and B. Morey. 1983. Review of oil agglomeration techniques for processing of fine coals. International Journal of Mineral Processing 11: 175–201.
  • Mustafa Özer, Omar M. Basha & Badie Morsi (2017) Coal-Agglomeration Processes: A Review, International Journal of Coal Preparation and Utilization, 37:3, 131-167. https://doi.org/10.1080/19392699.2016.1142443 Nicol, S. K., and A. R. Swanson. 1980. Oil in water emulsion for agglomeration of coal fines. Patent US4209301 A. File date May 8, 1978, Issue date June 24, 1980.
  • Osborne, D. 1988. Flotation, agglomeration and selective flocculation. Coal preparation Technology 1: 415–477.
  • Özbayoğlu, G. and Mamurekli, M., 1994. Super-clean coal production from Turkish bituminous coal, Fuel, Vol. 73, pp. 1221-1223.
  • Özer, Mustafa, Basha, Omar M., Morsi, Badie, 2017. Coal-Agglomeration Processes: A Review, International Journal of Coal Preparation and Utilization, 37:3, 131-167. https://doi.org/10.1080/19392699.2016.1142443 Petela, R. 1991. Prediction of the product size in the agglomeration of coal particles in a water-oil emulsion. Fuel 70: 509–517.
  • Shrauti, S. M., and D. W. Arnold. 1995. Recovery of waste fine coal by oil agglomeration. Fuel 74: 459–465. Şahinoğlu, E. ve Uslu, T., 2008. Amenability of Muzret Bituminous Coal to Oil Agglomeration, Energy Conversion and Management, 49, 12, 3684-3690.
  • Slaghuis, J. H., and L. C. Ferreira. 1987. Selective spherical agglomeration of coal: An amended mechanism of agglomerate formation and growth and its effect on product quality. Fuel 66: 1427–1430.
  • Shukla, D. and Venugopal, R., 2019. Optimization of the process parameters for fine coal–oil agglomeration process using waste mustard oil. Powder Technology, 346, 316-325.
  • Steedman, W. G., and S. V. Krishnan, 1987. Oil agglomeration process for the treatment of fine coal. In Fine Coal Processing, 179–204. Park Ridge, NJ: Noyes Publications.
  • Stockton, J.B., 1989. The effect of froth structures on flotation kinetics and selectivity, Ph.D. thesis, Victoria University of Manchester (UMIST, Chem. Eng. Dep.), Manchester, UK.
  • Talbot, F. D. F., Capes, C. E., Darcovich, K., 1989. Surface characteristics of coal-oil agglomerates in the floc regime. Energy & Fuels 3, 64–70.
  • Toll, F. N., Coleman, R. D., Sparks, B. D., Majid, A., 1995. Agglomeration-flotation: Recovery of hydrophobic components from oil sands fine tailings. Fuel 74, 1156–1161.
  • Uçbaş, Y., Öteyaka, B. ve Özdağ, H., 1997. Manyezit Cevherinin Yağ Aglomerasyonu İle Zenginleştirilmesinde Bazı Proses Değişkenlerinin Aglomerat Boyutu ve Proses Verimi Üzerine Etkisi. Türkiye 15. Madencilik Kongresi, Ankara, 383-388.
  • Ulusoy, U., Cebeci, Y., Şimşek, S., 2002. Investigation of the effect of agglomeration time, pH and various salts on the cleaning of Zonguldak bituminous coal by oil agglomeration. Fuel 81, 1131–1137.
  • Ünal, İ., Aktaş, Z., Olcay, A., 2000. Bitümlü Kömür ve Linyitin Yağ Aglomerasyonu, Türkiye 12. Kömür Kongresi Bildiriler Kitabı, Zonguldak.
  • Ünal, İ., Erşan, G. M., 2007. Factors Affecting The Oil Aglomeration of Sivas-Divriği-Uluçayır Lignite, Energy Sources, 29, Part A, 983–993.
  • Uslu, T., Şahinoğlu, E., 2010. Atık Yağların Kömürün Temizlenmesinde Kullanımı ve Türkiye'deki Potansiyel. Madencilik Türkiye (Madencilik ve Yer Bilimleri Dergisi), cilt.1, sa.5, ss.30-34.
  • Venugopal, R., Shukla, D., 2019. Optimization of the process parameters for fine coal–oil agglomeration process using waste mustard oil. Powder Technology, 346, 316-325.
  • Wagman, D. D., 1969. NBS technical note 270-4.
  • Wen WW, Sun SC, 1981. An electrokinetic study on the oil flotation of oxidized coal. Sep Sci Technol 16, 1491–521.
  • Woodburn, E. T., Flynn, S. A., 1987. A froth ultra-fine model for the selective separation of coal from mineral in a dispersed air flotation cell. Powder Tech., Vol. 49, pp. 127-142.
  • Yüce, vd., 2009. Kömür Yıkama Tesislerinde Ağır Ortam Kayıplarının Nedenleri –Eski Çeltek Kömür Yıkama Tesisinin Analizi. 21. Uluslararası Madencilik Kongresi ve Sergisi, Antalya. Yamık, A., Tosun, Y. İ., Güneş, N., 1994. Kömürden Külün ve Kükürdün Arındırılması, Türkiye 9. Kömür Kongresi, Zonguldak, 201-210. Yang, G. C. C., Markuszewski, R., & Wheelock, T. D. 1987. Oil Agglomeration of Coal in Inorganic Salt Solutions. Pages 133-146. Received 12 Nov 1986, Accepted 09 Mar 1987, Published online: 27 Apr 2007. [https://doi.org/10.1080/07349348808945562] Yu, Z., 1998. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal. Vancouver, Canada: University of British Columbia.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimyasal-Biyolojik Kazanma Teknikleri ve Cevher Hazırlama
Bölüm Araştırma Makalesi
Yazarlar

Kemal Şahbudak 0000-0003-4853-6843

Yakup Cebeci 0000-0001-5344-8392

Yayımlanma Tarihi 10 Eylül 2024
Gönderilme Tarihi 14 Aralık 2023
Kabul Tarihi 18 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 63 Sayı: 1

Kaynak Göster

APA Şahbudak, K., & Cebeci, Y. (2024). Oil Agglomeration in Zonguldak Bituminous Coal Dust: The Role of Inorganic Materials. Bilimsel Madencilik Dergisi, 63(1), 31-40. https://doi.org/10.30797/madencilik.1404703
AMA Şahbudak K, Cebeci Y. Oil Agglomeration in Zonguldak Bituminous Coal Dust: The Role of Inorganic Materials. Madencilik. Eylül 2024;63(1):31-40. doi:10.30797/madencilik.1404703
Chicago Şahbudak, Kemal, ve Yakup Cebeci. “Oil Agglomeration in Zonguldak Bituminous Coal Dust: The Role of Inorganic Materials”. Bilimsel Madencilik Dergisi 63, sy. 1 (Eylül 2024): 31-40. https://doi.org/10.30797/madencilik.1404703.
EndNote Şahbudak K, Cebeci Y (01 Eylül 2024) Oil Agglomeration in Zonguldak Bituminous Coal Dust: The Role of Inorganic Materials. Bilimsel Madencilik Dergisi 63 1 31–40.
IEEE K. Şahbudak ve Y. Cebeci, “Oil Agglomeration in Zonguldak Bituminous Coal Dust: The Role of Inorganic Materials”, Madencilik, c. 63, sy. 1, ss. 31–40, 2024, doi: 10.30797/madencilik.1404703.
ISNAD Şahbudak, Kemal - Cebeci, Yakup. “Oil Agglomeration in Zonguldak Bituminous Coal Dust: The Role of Inorganic Materials”. Bilimsel Madencilik Dergisi 63/1 (Eylül 2024), 31-40. https://doi.org/10.30797/madencilik.1404703.
JAMA Şahbudak K, Cebeci Y. Oil Agglomeration in Zonguldak Bituminous Coal Dust: The Role of Inorganic Materials. Madencilik. 2024;63:31–40.
MLA Şahbudak, Kemal ve Yakup Cebeci. “Oil Agglomeration in Zonguldak Bituminous Coal Dust: The Role of Inorganic Materials”. Bilimsel Madencilik Dergisi, c. 63, sy. 1, 2024, ss. 31-40, doi:10.30797/madencilik.1404703.
Vancouver Şahbudak K, Cebeci Y. Oil Agglomeration in Zonguldak Bituminous Coal Dust: The Role of Inorganic Materials. Madencilik. 2024;63(1):31-40.

22562 22561 22560 22590 22558