Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Lateral Load on the Carrying Capacity of I Beams under Bending Effect

Yıl 2021, Cilt: 12 Sayı: 2, 321 - 335, 01.12.2021
https://doi.org/10.29048/makufebed.895034

Öz

One of the reasons that steel is preferred for carrier system material is due to its high strength and ductile behaviour. Deformation capacity and the ductile behaviour of steel structure components depends on a suitable design. However, steel structure components may face stability problems due to being exposed to high out-of-design loads. For steel structures, this condition can be observed while beams of the steel structure is under bending effect on their strong axis and is also exposed to lateral loading. If this stability condition is not prevented, the system will undergo plastic deformation into a failure state and lateral buckling will occur. Mentioned condition may cause the steel carrier system with high ductility properties to display brittle behaviour. In this research paper, the effect of lateral load on the capacity of a I beams under bending effect is investigated. In the study, beams with different section and span properties are exposed to different loads. In this context, in order to determine the effect of lateral load on the capacity, 19 different models with 11 different loads on each model are analysed using Ansys Workbench finite element program and the results are presented comparatively.

Kaynakça

  • Anapayan, T., Mahendran, M., Mahaarachchi, D. (2011). Lateral distortional buckling tests of a new hollow flange channel beam. Thin-Walled Structures, 49(1): 13-25.
  • Attard, M. M. (1986). Lateral buckling analysis of beams by the fem. Computers & Structures, 23(2): 217-231.
  • Ayhan, D. (2007). Çelik Kirişlerde Yanal Burulmalı Burkulma Analizi. İstanbul: İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü.
  • Elgaaly, M., Seshadri, A. (1998). Depicting the behavior of girders with corrugated webs up to failure using non-linear finite element analysis. Advances in Engineering Software, 29(3-6): 195-208.
  • Ellobody, E. (2011). Interaction of buckling modes in castellated steel beams. Journal of Constructional Steel Research, 67(5): 814-825.
  • Lee, J., Kim, S.-E., Hong, K. (2002). Lateral buckling of I-section composite beams. Engineering Structures, 24(7): 955-964.
  • Mahendran, M., Avery, P. (1996). Buckling Experiments on Hollow Flange Beams with Web Stiffeners. Journal of Structural Engineering, 123(9): 1130-1134.
  • Moon, J., Yi, J.-W., Choi, B. H., Lee, H.-E. (2009). Lateral–torsional buckling of I-girder with corrugated webs under uniform bending. Thin-Walled Structures, 47(1): 21-30.
  • Mudenda, K., Zingoni, A. (2018). Lateral-torsional buckling behavior of hot-rolled steel beams with flange upstands. Journal of Constructional Steel Research,144: 53-64.
  • Trahair, N. (2016). Torsion Equations for Lateral Buckling. Engineering Structures, 128: 161-165.
  • Tsavdaridis, K. D., D'Mello, C. (2011). Web buckling study of the behaviour and strength of perforated steel beams with different novel web opening shapes. Journal of Constructional Steel Research, 67(10): 1605-1620.
  • Yılmaz, T., Kıraç, N. (2016). On the Evaluation of Critical Lateral-Torsional Buckling of Monosymmetric Beam-Columns. World Academy of Science. Engineering and Tecnology International Journal of Civil and Environmental Engineering, 10(7): 885-892.

Eğilme Etkisi Altındaki I Kirişlerde Yanal Yükün Taşıma Kapasitesine Etkisi

Yıl 2021, Cilt: 12 Sayı: 2, 321 - 335, 01.12.2021
https://doi.org/10.29048/makufebed.895034

Öz

Taşıyıcı sistemlerde malzeme olarak yapısal çeliğin tercih edilmesinin sebeplerinden biri de yüksek dayanım ve sünek davranış sergilemesindendir. Çelik yapı elemanlarının şekil değiştirme kapasitesinin yüksek olması ve sünek davranış sergileyebiliyor olması uygun tasarıma bağlıdır. Fakat yapıya tasarım dışı yük gelmesi, çelik yapı elemanlarının taşıma kapasitesinin aşılması halinde, stabilite problemlerine neden olmaktadır. Bu durum özellikle çelik yapılarda kirişlerin kuvvetli eksen tarafında eğilme etkisi altında iken yanal yük alması şeklinde gözlenir. Bu stabilite problemi önlenmez ise sistem plastik deformasyona maruz kalıp göçme durumuna geçerek yanal olarak burkulacaktır. Bu durumda, yüksek süneklik özelliklerine sahip çelik taşıyıcı sistemin gevrek davranış göstermesinin önünü açacaktır. Bu araştırma makalesi, eğilme etkisi altında bulanan I kirişte yanal yükün kiriş kapasitesine etkisini incelemek amacıyla yapılmıştır. Çalışmada farklı yüklerin etkisi altında bırakılan, farklı kesit ve açıklıklarda kirişler kullanılmıştır. Bu bağlamda, yanal yükün kiriş kapasitesine etkisinin ortaya koyulması amacıyla Ansys Workbench sonlu elemanlar programında 19 farklı modelin 11 farklı artan yük altında analizleri yapılmış ve elde edilen sonuçlar karşılaştırmalı olarak sunulmuştur.

Kaynakça

  • Anapayan, T., Mahendran, M., Mahaarachchi, D. (2011). Lateral distortional buckling tests of a new hollow flange channel beam. Thin-Walled Structures, 49(1): 13-25.
  • Attard, M. M. (1986). Lateral buckling analysis of beams by the fem. Computers & Structures, 23(2): 217-231.
  • Ayhan, D. (2007). Çelik Kirişlerde Yanal Burulmalı Burkulma Analizi. İstanbul: İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü.
  • Elgaaly, M., Seshadri, A. (1998). Depicting the behavior of girders with corrugated webs up to failure using non-linear finite element analysis. Advances in Engineering Software, 29(3-6): 195-208.
  • Ellobody, E. (2011). Interaction of buckling modes in castellated steel beams. Journal of Constructional Steel Research, 67(5): 814-825.
  • Lee, J., Kim, S.-E., Hong, K. (2002). Lateral buckling of I-section composite beams. Engineering Structures, 24(7): 955-964.
  • Mahendran, M., Avery, P. (1996). Buckling Experiments on Hollow Flange Beams with Web Stiffeners. Journal of Structural Engineering, 123(9): 1130-1134.
  • Moon, J., Yi, J.-W., Choi, B. H., Lee, H.-E. (2009). Lateral–torsional buckling of I-girder with corrugated webs under uniform bending. Thin-Walled Structures, 47(1): 21-30.
  • Mudenda, K., Zingoni, A. (2018). Lateral-torsional buckling behavior of hot-rolled steel beams with flange upstands. Journal of Constructional Steel Research,144: 53-64.
  • Trahair, N. (2016). Torsion Equations for Lateral Buckling. Engineering Structures, 128: 161-165.
  • Tsavdaridis, K. D., D'Mello, C. (2011). Web buckling study of the behaviour and strength of perforated steel beams with different novel web opening shapes. Journal of Constructional Steel Research, 67(10): 1605-1620.
  • Yılmaz, T., Kıraç, N. (2016). On the Evaluation of Critical Lateral-Torsional Buckling of Monosymmetric Beam-Columns. World Academy of Science. Engineering and Tecnology International Journal of Civil and Environmental Engineering, 10(7): 885-892.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Sena Güven 0000-0003-1617-6484

Devran Çelik 0000-0001-9011-4041

Yayımlanma Tarihi 1 Aralık 2021
Kabul Tarihi 25 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 12 Sayı: 2

Kaynak Göster

APA Güven, S., & Çelik, D. (2021). Eğilme Etkisi Altındaki I Kirişlerde Yanal Yükün Taşıma Kapasitesine Etkisi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(2), 321-335. https://doi.org/10.29048/makufebed.895034