Gün Öncesi Piyasası, elektrik piyasası katılımcılarına gerçek zamandan bir gün öncesinde ticaret yapma imkânı sunan bir piyasadır. Gün Öncesi Piyasasında her saat için ayrı bir Piyasa Takas Fiyatı oluşturulmaktadır. Bu çalışmada, saatlik Piyasa Takas Fiyatının derin öğrenme teknikleri kullanılarak tahmin edilmesi amaçlanmıştır. Bu doğrultuda MLP, CNN, LSTM ve GRU modelleri ile 24 saatlik Piyasa Takas Fiyatı tahmin edilmiştir. Elde edilen sonuçlara göre, LSTM 8,15 MAPE değeri ile en iyi ortalama tahmin performansına sahip olmuştur. LSTM’i 8,44 MAPE değeri ile MLP, 8,72 MAPE değeri ile GRU ve 9,27 MAPE değeri ile CNN takip izlemiştir. Bu çalışmada kullanılan meteorolojik değişkenler için yenilebilir kaynaklarla üretim yapan santrallerin yoğun olduğu iller seçilmiştir. Yenilenebilir kaynaklarla elektrik üretimine olan eğilimin gelecekte daha da artması beklenmektedir. Bu bağlamda, piyasa katılımcıları için elektrik fiyat tahmininde bu kaynaklarla gerçekleşen üretimi etkileyebilecek faktörlerin göz önüne alınmasının önemli olduğu düşünülmektedir.
Gün Öncesi Piyasası Fiyat Tahmini Piyasa Takas Fiyatı Derin Öğrenme
AFYON KOCATEPE ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ BİRİMİ
18.SOS.BİL.08
Day-Ahead Market offers electricity market participants the opportunity to trade electricity one day ahead of real-time. For each hour, a separate Market Clearing Price is created in Day-Ahead Market. This study aims to predict the hourly Market Clearing Price using deep learning techniques. In this context, 24-hour Market Clearing Prices were forecasted with MLP, CNN, LSTM, and GRU. LSTM had the best average forecasting performance with an 8.15 MAPE value, according to the results obtained. MLP followed the LSTM with 8.44 MAPE, GRU with 8.72 MAPE, and CNN with 9.27 MAPE. In the study, the provinces where the power plants producing with renewable resources are dense were selected for meteorological variables. It is expected that the trend towards electricity generation with renewable resources will increase in the future. In this context, it is thought important for market participants to consider the factors that may affect the production with these resources in the electricity price forecasting.
Day-Ahead Market Price Forecasting Market Clearing Price Deep Learning
18.SOS.BİL.08
Birincil Dil | İngilizce |
---|---|
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Proje Numarası | 18.SOS.BİL.08 |
Yayımlanma Tarihi | 29 Temmuz 2022 |
Gönderilme Tarihi | 2 Nisan 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 9 Sayı: 2 |