Numerical Investigation on Heat Enhancement Method with Using Circular Dimpled Tube
Yıl 2019,
, 19 - 31, 29.03.2019
Toygun Dağdevir
,
Orhan Keklikcioglu
,
Veysel Ozceyhan
,
Sibel Gunes
Öz
In this
study, the effect of dimpled tube which is heated with constant heat flux on
heat transfer enhancement is numerically investigated Using physically enhanced
tube is one of the passive heat transfer enhancement methods. The reason of
using dimpled tube is increase turbulence through the tube and destruct the
thermal boundary layer. The numerical study is validated with an experimental
study and configurations of cases are expanded with chancing pitch length. The
considered cases are conducted in Reynolds number range of 3000 to 8000. Used
fluid through the flow and its material copper are selected as water and
copper, respectively. The k- ε RNG turbulence model is used to simulate
turbulent flow adjacent the inner wall surface. The analyses are determined
with Nusselt number (Nu), friction factor (f) and performance evaluation
criteria (PEC). The highest Nusselt
number and the minimum friction factor is obtained when the Reynolds number of
8000, as 135.54 and 0.0599, respectively, for pitch length of 10 mm and 50 mm.
The highest THP value is observed as 2.01 by the case of pitch length of 10 mm
and Reynolds number of 3000.
Kaynakça
- Akansu, S. O., (2006). Heat Transfers and Pressure Drops for Porous-ring Turbulators in a Circular Pipe, Applied Energy, 83(3), 280-298.
- Ayhan, T., Azak, Y., Demirtas, C. & Ayhan, B., (1999). Numerical and Experimental Investigation of Enhancement of Turbulent Flow Heat Transfer in Tubes by Means of Truncated Hollow Cone Inserts, Heat Transfer Enhancement of Heat Exchangers, Kluwer Academic Publishers.
- Chang, S. W., Jan, Y. J., & Liou, J. S. (2007). “Turbulent Heat Transfer and Pressure Drop in Tube Fitted with Serrated Twisted Tape”, International Journal of Thermal Sciences, 46, 506-518.
- Dong, J., Chen, J., Zhang, W., & Hu, J. (2010). Experimental and Numerical Investigation of Thermal -hydraulic Performance in Wavy Fin-and-Flat Tube Heat Exchangers, Applied Thermal Engineering, 30, 1377-1386.
- Durmus, A., (2004). Heat Transfer and Exergy Loss in Cut Out Conical Turbulators, Energy Conversion and Management, 45, 785–796.
- Eiamsa-ard, S., Wongcharee, K., Eiamsa-ard, P. & Thianpong, C., (2010). Heat Transfer Enhancement in a Tube Using Delta-winglet Twisted Tape Inserts, Applied Thermal Engineering, 30, 310–318.
- Eiamsa-ard, S., Thianpong, C., & Eiamsa-ard, P., (2010). Turbulent Heat Transfer Enhancement by Counter/Co-swirling Flow in a Tube fitted with Twin Twisted Tapes, Experimental Thermal and Fluid Science, 3, 53–62.
- Eiamsa-ard, S. & Promvonge, P. (2010). Thermal Characterization of Turbulent Tube Flows over Diamond-shaped Elements in Tandem, International Journal of Thermal Sciences, 49(6), 1051-1062.
- Eiamsa-ard, S., Promvonge, P., (2006). Experimental Investigation of Heat Transfer and Friction Characteristics in a Circular Tube Fitted with V-Nozzle Turbulators, International Communications in Heat and Mass Transfer, 33, 591–600.
- Gunes, S., Ozceyhan, V., & Buyukalaca, O., (2010). Heat Transfer Enhancement in a Tube with Equilateral Triangle Cross Sectioned Coiled Wire Inserts, Experimental Thermal and Fluid Science, 34, 684-691.
- Gunes, S., Ozceyhan, V., & Buyukalaca, O., (2010). The Experimental Investigation of Heat Transfer and Pressure Drop in a Tube with Coiled Wire Inserts Placed Separately from the Tube Wall, Applied Thermal Engineering, 30, 1719-1725.
- Incropera, F.P., Witt, P.D. Bergman, T.L. & Lavine, A.S. (2006). Fundamental of Heat and Mass Transfer, John-Wiley & Sons.
- Li, M., Khan, T. Al-Hajri, E., & Ayub, Z., (2016). Single Phase heat transfer and pressure drop analysis of a dimpled enhanced tube, Applied Thermal Engineering, 101, 38-46.
- Lu, B., & Jiang, P. X. (2006). Experimental and Numerical Investigation of Convection Heat Transfer in a Rectangular Channel with Angled Ribs, Experimental Thermal and Fluid Science, 30, 513-521.
- Ozceyhan, V., Gunes, S., Buyukalaca, O., & Altuntop, N. (2008). Heat Transfer Enhancement in a Tube Using Circular Cross-Sectional Rings Separated from Wall, Applied Energy, 85, 988-1001.
- Petukhov, BS. (1970). Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties, In Advances in Heat Transfer. New York: Academic Press.
- Promvonge, P., (2010). Heat Transfer and Pressure Drop in a Channel with Multiple 60° V-Baffles, International Communications in Heat and Mass Transfer, 37, 835–840.
- Promvonge, P., (2008). Thermal Performance in Circular Tube Fitted with Coiled Square Wires, Energy Conversion and Management, 49, 980–987.
- Promvonge, P., (2008). Heat Transfer Behaviors in Round Tube with Conical Ring Inserts, Energy Conversion and Management, 49, 8–15.
- Promvonge, P. and Eiamsa-ard, S., (2006). Heat Transfer Enhancement in a Tube with Combined Conical-nozzle inserts and Swirl Generator, Energy Conversion and Management, 47, 2867–2882.
- Sapali, S. N., & Patil, P. A., (2010). Heat Transfer During Condensation of HFC-134a and R-404A inside of a Horizontal Smooth and Micro-fin Tube, Experimental Thermal and Fluid Science, 34, 1133–1141.
- Shaikh, N., & Siddiqui, M. H. K. (2007). Heat Transfer Augmentation in a Heat Exchanger Tube Using a Baffle, International Journal of Heat and Fluid Flow, 28, 318-328.
- Tandiroglu, A., & Ayhan, T. (2006). Energy Dissipation Analysis of Transient Heat Transfer for Turbulent Flow in a Circular Tube with Baffle Inserts, Applied Thermal Engineering, 26, 178-185.
- Yakut, K., Sahin, B., and Canbazoglu, S., (2004). Performance and Flow-induced Vibration Characteristics for Conical-ring Turbulators, Applied Energy, 79, 65–76.
- Yakut, K., Alemdaroglu, N., Sahin, B., & Celik, C. (2006). Optimum Design-Parameters of a Heat Exchanger Having Hexagonal Fins, Applied Energy, 83, 82-98.
Dairesel Oyuntu ile Isı Transferi İyileştirilmesi Üzerine Sayısal Araştırma
Yıl 2019,
, 19 - 31, 29.03.2019
Toygun Dağdevir
,
Orhan Keklikcioglu
,
Veysel Ozceyhan
,
Sibel Gunes
Öz
Bu çalışmada sabit ısı akısı ile ısıtılmış bir boruya oyuntu yerleştirilmesinin ısı transferi
iyileştirilmesi üzerindeki etkisi sayısal olarak araştırılmıştır. Fiziksel olarak boru üzerinde
yapılan iyileştirme ısı transferi iyileştirilmesinin pasif metotlarından birisidir.
Oyuntulaştırılmış boru kullanımının sebebi akış boyunca türbülansı arttırmak ve termal sınır
tabakayı parçalamaktır. Sayısal çalışma, deneysel başka bir çalışma ile doğrulanmış ve
incelenen değişen hatve uzunlukları genişletilmiştir. İncelenen analizler Reynolds sayısının
3000’den 8000’ e kadar gerçekleştirilmiştir. Akış boyunca kullanılan akışkan ve boru
malzemesi sırasıyla su ve bakır olarak seçilmiştir. İç duvar etrafındaki türbülanslı akışın
simülasyonu için k-ε RNG türbülans modeli kullanılmıştır. Analizlerin sonuçları Nusselt
sayısı (Nu), sürtünme katsayısı (f) ve performans değerlendirme kriteri (PEC) ile
değerlendirilmiştir. En yüksek Nu ve en düşük f Re sayısı 8000 iken, sırasıyla 130.54 ve
0.0453 olarak, hatve uzunluğunun sırasıyla 10 mm ve 50 mm olduğu durumlarda elde
edilmiştir.
Kaynakça
- Akansu, S. O., (2006). Heat Transfers and Pressure Drops for Porous-ring Turbulators in a Circular Pipe, Applied Energy, 83(3), 280-298.
- Ayhan, T., Azak, Y., Demirtas, C. & Ayhan, B., (1999). Numerical and Experimental Investigation of Enhancement of Turbulent Flow Heat Transfer in Tubes by Means of Truncated Hollow Cone Inserts, Heat Transfer Enhancement of Heat Exchangers, Kluwer Academic Publishers.
- Chang, S. W., Jan, Y. J., & Liou, J. S. (2007). “Turbulent Heat Transfer and Pressure Drop in Tube Fitted with Serrated Twisted Tape”, International Journal of Thermal Sciences, 46, 506-518.
- Dong, J., Chen, J., Zhang, W., & Hu, J. (2010). Experimental and Numerical Investigation of Thermal -hydraulic Performance in Wavy Fin-and-Flat Tube Heat Exchangers, Applied Thermal Engineering, 30, 1377-1386.
- Durmus, A., (2004). Heat Transfer and Exergy Loss in Cut Out Conical Turbulators, Energy Conversion and Management, 45, 785–796.
- Eiamsa-ard, S., Wongcharee, K., Eiamsa-ard, P. & Thianpong, C., (2010). Heat Transfer Enhancement in a Tube Using Delta-winglet Twisted Tape Inserts, Applied Thermal Engineering, 30, 310–318.
- Eiamsa-ard, S., Thianpong, C., & Eiamsa-ard, P., (2010). Turbulent Heat Transfer Enhancement by Counter/Co-swirling Flow in a Tube fitted with Twin Twisted Tapes, Experimental Thermal and Fluid Science, 3, 53–62.
- Eiamsa-ard, S. & Promvonge, P. (2010). Thermal Characterization of Turbulent Tube Flows over Diamond-shaped Elements in Tandem, International Journal of Thermal Sciences, 49(6), 1051-1062.
- Eiamsa-ard, S., Promvonge, P., (2006). Experimental Investigation of Heat Transfer and Friction Characteristics in a Circular Tube Fitted with V-Nozzle Turbulators, International Communications in Heat and Mass Transfer, 33, 591–600.
- Gunes, S., Ozceyhan, V., & Buyukalaca, O., (2010). Heat Transfer Enhancement in a Tube with Equilateral Triangle Cross Sectioned Coiled Wire Inserts, Experimental Thermal and Fluid Science, 34, 684-691.
- Gunes, S., Ozceyhan, V., & Buyukalaca, O., (2010). The Experimental Investigation of Heat Transfer and Pressure Drop in a Tube with Coiled Wire Inserts Placed Separately from the Tube Wall, Applied Thermal Engineering, 30, 1719-1725.
- Incropera, F.P., Witt, P.D. Bergman, T.L. & Lavine, A.S. (2006). Fundamental of Heat and Mass Transfer, John-Wiley & Sons.
- Li, M., Khan, T. Al-Hajri, E., & Ayub, Z., (2016). Single Phase heat transfer and pressure drop analysis of a dimpled enhanced tube, Applied Thermal Engineering, 101, 38-46.
- Lu, B., & Jiang, P. X. (2006). Experimental and Numerical Investigation of Convection Heat Transfer in a Rectangular Channel with Angled Ribs, Experimental Thermal and Fluid Science, 30, 513-521.
- Ozceyhan, V., Gunes, S., Buyukalaca, O., & Altuntop, N. (2008). Heat Transfer Enhancement in a Tube Using Circular Cross-Sectional Rings Separated from Wall, Applied Energy, 85, 988-1001.
- Petukhov, BS. (1970). Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties, In Advances in Heat Transfer. New York: Academic Press.
- Promvonge, P., (2010). Heat Transfer and Pressure Drop in a Channel with Multiple 60° V-Baffles, International Communications in Heat and Mass Transfer, 37, 835–840.
- Promvonge, P., (2008). Thermal Performance in Circular Tube Fitted with Coiled Square Wires, Energy Conversion and Management, 49, 980–987.
- Promvonge, P., (2008). Heat Transfer Behaviors in Round Tube with Conical Ring Inserts, Energy Conversion and Management, 49, 8–15.
- Promvonge, P. and Eiamsa-ard, S., (2006). Heat Transfer Enhancement in a Tube with Combined Conical-nozzle inserts and Swirl Generator, Energy Conversion and Management, 47, 2867–2882.
- Sapali, S. N., & Patil, P. A., (2010). Heat Transfer During Condensation of HFC-134a and R-404A inside of a Horizontal Smooth and Micro-fin Tube, Experimental Thermal and Fluid Science, 34, 1133–1141.
- Shaikh, N., & Siddiqui, M. H. K. (2007). Heat Transfer Augmentation in a Heat Exchanger Tube Using a Baffle, International Journal of Heat and Fluid Flow, 28, 318-328.
- Tandiroglu, A., & Ayhan, T. (2006). Energy Dissipation Analysis of Transient Heat Transfer for Turbulent Flow in a Circular Tube with Baffle Inserts, Applied Thermal Engineering, 26, 178-185.
- Yakut, K., Sahin, B., and Canbazoglu, S., (2004). Performance and Flow-induced Vibration Characteristics for Conical-ring Turbulators, Applied Energy, 79, 65–76.
- Yakut, K., Alemdaroglu, N., Sahin, B., & Celik, C. (2006). Optimum Design-Parameters of a Heat Exchanger Having Hexagonal Fins, Applied Energy, 83, 82-98.