Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Pine Oil Aganist Some Biochemical Parametres Occurring Muscle Tissue of The Rats İnduced Type-1 Diabetes

Yıl 2015, Cilt: 27 Sayı: 4, 114 - 124, 06.05.2016
https://doi.org/10.7240/mufbed.68767

Öz

The present study was designed to evaluate the impact of pine oil on some biochemical parameters in muscle tissue of streptozotocin-induced type-1diabetic rats. The rats were divided into three groups: control (C) streptozotocin (STZ), streptozotocin+pine oil (STZ+PO) grups. Diabetes induced in rats by a single intraperitoneal injection of streptozotocin (65 mg/kg). 1 mL/kg the dose pine oil was intraperitoneally injected twice in a week to the streptozotocin+pine oil (STZ+PO), and additionally 0.5 mL /500 mL dose of pine oil was added to drinking water of these group. MDA levels of muscle tissue was increased significantly (p < 0,001) in STZ group and glutathione (GSH) level muscle tissue was decreased significantly (p < 0,001) when compared to control group. It was detected that MDA levels of muscle tissue significantly was decreased (p < 0,001) and GSH level was significantly (p < 0,001) inreased in the STZ+PO group compared to STZ group. The fatty acid composition, A, D, E and K vitamins, cholesterol and sterol levels significantly were changed in the control group compared to STZ group, in addition to, the applied pine oil can significantly inhibited these changes in muscle tissue. According to our findings, it was observed that the pine oil has beneficial effects in the decreasing of some biochemical metabolic disorders caused by experimental diabetes in the muscle tissue. 

Kaynakça

  • Demir, E., Yılmaz, Ö. (2013). Streptozotosin ile Tip-2 diyabet oluşturulan sıçanlarda çam yağının antihiperglisemik ve bazı biyokimyasal parametrelere etkisi. Marmara Fen Bilimleri Dergisi, 25(3), 140- 156.
  • Yesil-Celiktas, O., Ganzera, M., Akgun, İ., Sevimli, C., Korkmaz, K.S, Bedir, E. (2009). Determination of polyphenolic constituents and biological activities of bark extracts from different pinus species. J. Sci. Food Agric, 89, 1339-1345.
  • Clark, S.P., Bollag, W.B., Westlund, K.N., Ma, F., Falls, G., Xie, D., Johnson, M., Isales, C.M., Bhattacharyya, M.H. (2014). Pine oil effects on chemical and thermal injury in mice and cultured mouse dorsal root ganglion neurons. Phytother Res, 28(2), 252-60.
  • Biswas, M., Kar, B., Bhattacharya, S., Kumar, R.B., Ghosh, A.K., Haldar, P.K. (2011). Antihyperglycemic activity and antioxidant role of Terminalia arjuna leaf in streptozotocin-induced diabetic rats. Pharmaceutical Biology, 49(4), 335–340.
  • Demir, E., Yilmaz, O., Ozsahin, A.D. (2013). The effect of some biochemical parameters in brain tissue of rats pine oil streptozotocin with experimental diabetes in rats. International Journal of Diabetes Research, 2(3), 39-44.
  • Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 95(2), 351-358.
  • Ellman, G.L. (1959). Tissue sulfhydryl groups, Arch. Biochem. Biophys, 82, 70-77.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem, 193(1), 265-275.
  • Hara, A., Radin, N.S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90(1), 420–426.
  • Christie, W.W. (1992). Gas Chromatography and Lipids. Glaskow, The Oil Press.
  • Katsanidis, E., Addis, P.B. (1999). Novel HPLC analysis of tocopherols and cholesterol in tissue. Free Radic. Biol. Med, 27, 1137-1140.
  • Bragagnolo, N., Rodriguez-Amaya, D.B. (2003). Comparison of the cholesterol content of Brazilian chicken and quail eggs. J. Food Comp. Anal, 16, 147- 153.
  • Duncan, D.B. (1957). Multiple ranges tests for correlated and heteroscedastic means. Biometrics, 13, 359–364.
  • Patel, D., Prasad, S., Kumar, R., Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed, 2(4), 320-30.
  • Jung, M., Park, M., Lee, H.C., Kang, Y.H., Kang, E.S., Kim, S.K. (2006). Antidiabetic agents from medicinal plants. Curr Med Chem, 13(10), 1203-1218.
  • Kumar, P., Sharma, A., Varshney, P., Rao, C.V. (2013). Antidiabetogenic and antioxidant effects of Caralluma attenuata extract on streptozotocin induced diabetes in rats. Journal of Pharmacy Research, 7, 257-262.
  • Genet, S., Kale, R.K., Baquer, N.Z. (2002). Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonellafoenum graecum). Mol Cell Biochem, 236, 7–12.
  • González-Burgos, E., Gómez-Serranillos, M.P. (2012). Terpene compounds in nature: a review of their potential antioxidant activity. Curr Med Chem, 19(31), 5319-5341.
  • Türkez, H., Aydin, E. (2016). In vitro assessment of cytogenetic and oxidative effects of α-pinene. Toxicol Ind Health, 32(1),168-76.
  • Murali, R., Karthikeyan, A., Saravanan, R. (2013). Protective effects of D-limonene on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rats. Basic Clin Pharmacol Toxicol, 112, 175–181.
  • Murali, R., Saravanan, R. (2012). Antidiabetic effect of D-limonene, a monoterpene in streptozotocin- induced diabetic rats. Biomedicine & Preventive Nutrition, 2, 269–275.
  • Jing, L., Zhang, Y., Fan, S., Gu, M., Guan, Y., Lu, X., Huang, C., Zhou, Z. (2013). Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high- fat diet-induced obesity. Eur J Pharmacol, 5, 715(1- 3): 46-55.
  • Sefi, M., Fetoui, H., Lachkar, N., Tahraoui, A., Lyoussi, B., Boudawara, T, Zeghal, N. (2011). Centaurium erythrea (Gentianaceae) leaf extract alleviates streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Journal of Ethnopharmacology, 135, 243–250.
  • Mishra, S.B., Verma, A., Vijayakumar, M. (2013). Preclinical evaluation of antihyperglycemic and antioxidant action of Nirmali (Strychnos potatorum) seeds in streptozotocin nicotinamide-induced diabetic Wistar rats: A histopathological investigation. Biomarkers and Genomic Medicine, 5, 157-163.
  • Gandhi, G.R., Ignacimuthu, S., Paulraj, M.G. (2011). Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats. Food Chem Toxicol, 49(11), 2725-33.
  • Tilvis, R.S. Miettinen, T.A. (1985). Fatty acid compositions of serum lipids, erythrocytes, and platelets in insulin-dependent diabetic women. J Clin Endocrinol Metab, 61(4), 741-5.
  • Naresh Kumar, R., Sundaram, R., Shanthi, P., Sachdanandam, P. (2013). Protective role of 20- OH ecdysone on lipid profile and tissue fatty acid changes in streptozotocin induced diabetic rats. Eur J Pharmacol, 698, 489–498.
  • Wakil, S.J., Abu-Elheiga, L.A. (2009). Fatty acid metabolism: target for metabolic syndrome. J. Lipid Res, 50, 138–143.
  • Winder, W.W., Wilson, H.A., Hardie, D.G., Rasmussen, B.B., Hutber, C.A., Call, G.B., Clayton, R.D., Conley, L.M., Yoon, S., Zhou, B. (1997). Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J. Appl. Physiol, 82(1), 219–225.
  • Vessby, B. (2000). Dietary fat and insulin actions in humans. Br J Nutr, 83, 91–6.
  • Güvenç, M., Yılmaz, Ö., Tuzcu, M., Özşahin, A.D. (2009). Contribution of vitamin C and α-lipoic acid and their combination on the products level of desaturase enzymes in the lung and muscle tissues of poorly controlled experimental diabetic rats. Research Journal of Biological Sciences, 4(6), 710-715.
  • Yilmaz, O., Ersan, Y., Dilek Ozsahin, A., Ihsan Ozturk, A., Ozkan, Y. (2013). Consequences of the combined α-tocopherol, ascorbic acid and α-lipoic acid on the glutathione, cholesterol and fatty acid composition in muscle and liver of diabetic rats. Iran J Basic Med Sci, 16, 165-72.
  • Dobrzyń, A., Dobrzyń, P. (2006). Stearoyl- CoA desaturase--a new player in skeletal muscle metabolism regulation. J Physiol Pharmacol, 57 Suppl 10, 31-42.
  • Demir, E. (2013). Tip-1 ve Tip-2 diyabet oluşturulmuş sıçanlarda hiperglisemi üzerine çam ve acı badem yağlarının etkileri. Doktora Tezi, Fırat Üniversitesi, Türkiye.
  • Bal, R., Türk, G., Tuzcu, M., Yilmaz, O., Ozercan, I., Kuloglu, T., Gür, S., Nedzvetsky, V.S., Tykhomyrov, A.A., Andrievsky, G.V., Baydas, G., Naziroglu, M. (2011). Protective effects of nanostructures of hydrated C(60) fullerene on reproductive function in streptozotocin-diabetic male rats. Toxicology, 282, 69–81.
  • Nakamura, M.T., Nara, T.Y. (2004). Structure, function, and dietary regulation of delta 6, delta 5, and delta 9 desaturases. Annu. Rev. Nutr, 24, 345–376.
  • Rimoldi, O.J., Finarelli, G.S., Brenner, R.R. (2001). Effects of diabetes and insulin on hepatic Δ6 desaturase gene expression. Biochem Biophys Res Commun. 283(2), 323-6.
  • Montanaro, M.A., Bernasconi, A.M., González, M.S., Rimoldi, O.J., Brenner, R.R. (2005). Effects of fenofibrate and insulin on the biosynthesis of unsaturated fatty acids in streptozotocin diabetic rats. Prostaglandins Leukot Essent Fatty Acids, 73, 369– 378.
  • Jan, S., Guillou, H., D’Andrea, S., Daval, S., Bouriel, M., Rioux, V., Legrand, P. (2004). Myristic acid increases delta6-desaturase activity in cultured rat hepatocytes. Reprod. Nutr. Dev, 44, 131–140.
  • Sato, M., Adan, Y., Shibata, K., Shoji, Y., Sato, H., Imaizumi, K. (2001). Cloning of rat Δ6-desaturase and its regulation by dietary eicosapentaenoic or docosahexaenoic acid. World Rev Nutr Diet, 88, 196– 199.
  • Price, P.T., Nelson, C.M., Clarke, S.D. (2000). Omega-3 polyunsaturated fatty acid regulation of gene expression. Curr Opin Lipidol, 11, 3–7.
  • Parveen, K., Ishrat, T., Malik, S., Kausar, M.A., Siddiqui, W.A. (2013). Modulatory effects of Pycnogenol® in a rat model of insulin-dependent diabetes mellitus: biochemical, histological, and immunohistochemical evidences. Protoplasma, 250, 347–360.
  • Parveen, K., Khan, M.R., Mujeeb, M., Siddiqui, W.A. (2010). Protective effects of Pycnogenol on hyperglycemia-induced oxidative damage in the liver of type 2 diabetic rats. Chemico-Biological Interactions, 186, 219–227.
  • Leoni, V., Caccia, C. (2013). 24S-hydroxycholesterol in plasma: A marker of cholesterol turnover in neurodegenerative diseases. Biochimie, 95, 595-612.
  • Do, R., Kiss, R.S., Gaudet, D., Engert, J.C. (2009). Squalene synthase: a critical enzyme in the cholesterol biosynthesis pathway. Clin Genet, 75, 19–29.
  • Xiao, X., Song, B.L. (2013). SREBP: a novel therapeutic target. Acta Biochim Biophys Sin, 45, 2–10.
  • Chen, Q., Gruber, H., Pakenham, C., Ratnayake, W.M., Scoggan, K.A. (2009). Dietary phytosterols and phytostanols alter the expression of sterol- regulatory genes in SHRSP and WKY inbred rats. Ann Nutr Metab, 55, 341–350.
  • Oliva, M.E., Ferreira, M.R., Chicco, A., Lombardo, Y.B. (2013). Dietary Salba (Salvia hispanica L) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats. Prostaglandins Leukot Essent Fatty Acids, 89(5), 279-89.
  • Harnafi, H., Ramchoun, M., Tits, M., Wauters, J.N., Frederich, M., Angenot, L., Aziz, M., Alem, C., Amrani, S. (2013). Phenolic acid-rich extract of sweet basil restores cholesterol and triglycerides metabolism in high fat diet-fed mice: A comparison with fenofibrate. Biomedicine & Preventive Nutrition, 3, 393–397.
  • Harnafia, H., Azizb, M., Amrani, S. (2009). Sweet basil (Ocimum basilicum L.) improves lipid metabolism in hypercholesterolemic rats. e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism, 4, 181–186.
  • Jong, A., Plat, J., Mensink, R.P. (2003). Metabolic effects of plant sterols and stanols. J Nutr Biochem, 14, 362-369.
  • Connor, W.E., Lin, D.S., Pappu, A.S., Frohlich, J., Gerhard, G. (2005). Dietary sitostanol and campestanol: accumulation in the blood of humans with sitosterolemia and xanthomatosis and in rat tissues. Lipids, 40(9), 919-23.
  • Alhazzaa, R., Oen, J.J.J., Sinclair, A.J. (2013). Dietary phytosterols modify the sterols and fatty acid profile in a tissue-specific pattern. Journal of Functional Foods, 5, 829-837
  • Frey, S.K., Vogel, S. (2011). Vitamin A metabolism and adipose tissue biology. Nutrients, 3(1), 27-39.
  • Wolf, G. (2007). Serum retinol-binding protein: a link between obesity, insulin resistance, and type 2 diabetes. Nutr Rev, 65(5), 251-6.
  • Yang, Q., Graham, T.E., Mody, N., Preitner, F., Peroni, O.D., Zabolotny, J.M., Kotani, K., Quadro, L., Kahn, B.B. (2005). Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 436 (7049), 356-62.
  • Kim, T., Davis, J., Zhang, A.J., He, X., Mathews, S.T. (2009). Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem Biophys Res Commun, 388 (2), 377-82.
  • Soetikno, V., Sari, F.R., Sukumaran, V., Lakshmanan, A.P., Harima, M., Suzuki, K., Kawachi, H., Watanabe, K. (2013). Curcumin decreases renal triglyceride accumulation through AMPK-SREBP signaling pathway in streptozotocin-induced type 1 diabetic rats. J Nutr Biochem, 24 (5), 796-802.
  • Kuzelová, M., Adameová, A., Sumbalová, Z., Paulíková, I., Harcárová, A., Svec, P., Kucharská, J. (2008). The effect of simvastatin on coenzyme Q and antioxidant/oxidant balance in diabetic- hypercholesterolaemic rats. Gen. Physiol. Biophys, 27, 291-298.
  • Jain, S.K., Levine, S.N. (1995). Elevated lipid peroxidation and vitamin E-quinone levels in heart ventricles of streptozotocin-treated diabetic rats. Free Radic Biol Med, 18(2), 337-41.
  • Bjİrneboe, A., Bjİrneboe, G.E., Drevon, C.A. (1990). Absorption, transport and distribution of vitamin E. J Nutr, 120 (3), 233-42.
  • Rigotti, A. (2007). Absorption, transport, and tissue delivery of vitamin E. Mol Aspects Med, 28(5-6), 423-36.
  • Kucharska, J., Gvozdjakova, A., Stefek, M., Sotnikova, R., Sumbalova, Z. (2001). Adaptive changes of antioxidant status in development of experimental diabetes. Bratisl Lek Listy, 102 (11), 515-519.
  • Ferreira, F.M., Seiça, R., Oliveira, P.J., Coxito, P.M., Moreno, A.J., Palmeira, C.M., Santos, M.S. (2003). Diabetes induces metabolic adaptations in rat liver mitochondria: role of coenzyme Q and cardiolipin contents. Biochim Biophys Acta, 1639 (2), 113-20.
  • Akerboom, T.P., Sies, H. (1981). Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol, 77, 373-82.

Tip-1 Diyabet Oluşturulan Sıçanların Kas Dokusunda Bazı Biyokimyasal Değişikliklere Karşı Çam Yağının Etkisi

Yıl 2015, Cilt: 27 Sayı: 4, 114 - 124, 06.05.2016
https://doi.org/10.7240/mufbed.68767

Öz

Bu çalışma, Tip–1 diyabet oluşturulan sıçanlarda çam yağının kas dokusundaki bazı biyokimyasal parametreler üzerine etkisinin araştırılması için tasarlandı. Sıçanlar kontrol (K), streptozotosin  (STZ) ve streptozotosin+çam yağı (STZ+ÇY) olmak üzere üç grubu ayrıldı. STZ gruplarına intraperitoneal enjeksiyonla streptozotosin (65 mg/kg) verilerek diyabet oluşturuldu. Çam yağı grubundaki sıçanlara haftada iki gün 1ml/kg dozunda intraperitoneal enjeksiyonla çam yağı, ayrıca deney boyunca 0,5 ml çam yağı 500 ml içme suyuna eklenerek verildi. Kontrol grubuna göre, STZ grubunda TBARS düzeyinin anlamlı bir şekilde arttığı (p<0.001), GSH ve total protein düzeyinin (p<0.001) anlamlı bir şekilde azaldığı belirlendi, STZ grubu ile karşılaştırıldığında, uygulanan çam yağı sonucunda TBARS düzeyinin anlamlı bir şekilde azaldığı (p<0.001),GSH ve total protein düzeyinin anlamlı bir şekilde arttığı (p<0.001) tespit edildi. Kontrol grubuna göre, STZ grubunda yağ asidi kompozisyonu, ADEK vitaminleri, kolesterol ve sterol düzeyinde önemli değişikliklerin olduğu, uygulanan çam yağının bu değişiklikleri önemli ölçüde engelleyebildiği saptandı. Elde ettiğimiz bulgulara göre, çam yağının kas dokusunda deneysel diyabetin neden olduğu bazı biyokimyasal metabolik düzensizliklerin azaltılmasında yararlı etkileri olduğu ortaya çıkmıştır.

Kaynakça

  • Demir, E., Yılmaz, Ö. (2013). Streptozotosin ile Tip-2 diyabet oluşturulan sıçanlarda çam yağının antihiperglisemik ve bazı biyokimyasal parametrelere etkisi. Marmara Fen Bilimleri Dergisi, 25(3), 140- 156.
  • Yesil-Celiktas, O., Ganzera, M., Akgun, İ., Sevimli, C., Korkmaz, K.S, Bedir, E. (2009). Determination of polyphenolic constituents and biological activities of bark extracts from different pinus species. J. Sci. Food Agric, 89, 1339-1345.
  • Clark, S.P., Bollag, W.B., Westlund, K.N., Ma, F., Falls, G., Xie, D., Johnson, M., Isales, C.M., Bhattacharyya, M.H. (2014). Pine oil effects on chemical and thermal injury in mice and cultured mouse dorsal root ganglion neurons. Phytother Res, 28(2), 252-60.
  • Biswas, M., Kar, B., Bhattacharya, S., Kumar, R.B., Ghosh, A.K., Haldar, P.K. (2011). Antihyperglycemic activity and antioxidant role of Terminalia arjuna leaf in streptozotocin-induced diabetic rats. Pharmaceutical Biology, 49(4), 335–340.
  • Demir, E., Yilmaz, O., Ozsahin, A.D. (2013). The effect of some biochemical parameters in brain tissue of rats pine oil streptozotocin with experimental diabetes in rats. International Journal of Diabetes Research, 2(3), 39-44.
  • Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 95(2), 351-358.
  • Ellman, G.L. (1959). Tissue sulfhydryl groups, Arch. Biochem. Biophys, 82, 70-77.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem, 193(1), 265-275.
  • Hara, A., Radin, N.S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90(1), 420–426.
  • Christie, W.W. (1992). Gas Chromatography and Lipids. Glaskow, The Oil Press.
  • Katsanidis, E., Addis, P.B. (1999). Novel HPLC analysis of tocopherols and cholesterol in tissue. Free Radic. Biol. Med, 27, 1137-1140.
  • Bragagnolo, N., Rodriguez-Amaya, D.B. (2003). Comparison of the cholesterol content of Brazilian chicken and quail eggs. J. Food Comp. Anal, 16, 147- 153.
  • Duncan, D.B. (1957). Multiple ranges tests for correlated and heteroscedastic means. Biometrics, 13, 359–364.
  • Patel, D., Prasad, S., Kumar, R., Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed, 2(4), 320-30.
  • Jung, M., Park, M., Lee, H.C., Kang, Y.H., Kang, E.S., Kim, S.K. (2006). Antidiabetic agents from medicinal plants. Curr Med Chem, 13(10), 1203-1218.
  • Kumar, P., Sharma, A., Varshney, P., Rao, C.V. (2013). Antidiabetogenic and antioxidant effects of Caralluma attenuata extract on streptozotocin induced diabetes in rats. Journal of Pharmacy Research, 7, 257-262.
  • Genet, S., Kale, R.K., Baquer, N.Z. (2002). Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonellafoenum graecum). Mol Cell Biochem, 236, 7–12.
  • González-Burgos, E., Gómez-Serranillos, M.P. (2012). Terpene compounds in nature: a review of their potential antioxidant activity. Curr Med Chem, 19(31), 5319-5341.
  • Türkez, H., Aydin, E. (2016). In vitro assessment of cytogenetic and oxidative effects of α-pinene. Toxicol Ind Health, 32(1),168-76.
  • Murali, R., Karthikeyan, A., Saravanan, R. (2013). Protective effects of D-limonene on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rats. Basic Clin Pharmacol Toxicol, 112, 175–181.
  • Murali, R., Saravanan, R. (2012). Antidiabetic effect of D-limonene, a monoterpene in streptozotocin- induced diabetic rats. Biomedicine & Preventive Nutrition, 2, 269–275.
  • Jing, L., Zhang, Y., Fan, S., Gu, M., Guan, Y., Lu, X., Huang, C., Zhou, Z. (2013). Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high- fat diet-induced obesity. Eur J Pharmacol, 5, 715(1- 3): 46-55.
  • Sefi, M., Fetoui, H., Lachkar, N., Tahraoui, A., Lyoussi, B., Boudawara, T, Zeghal, N. (2011). Centaurium erythrea (Gentianaceae) leaf extract alleviates streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Journal of Ethnopharmacology, 135, 243–250.
  • Mishra, S.B., Verma, A., Vijayakumar, M. (2013). Preclinical evaluation of antihyperglycemic and antioxidant action of Nirmali (Strychnos potatorum) seeds in streptozotocin nicotinamide-induced diabetic Wistar rats: A histopathological investigation. Biomarkers and Genomic Medicine, 5, 157-163.
  • Gandhi, G.R., Ignacimuthu, S., Paulraj, M.G. (2011). Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats. Food Chem Toxicol, 49(11), 2725-33.
  • Tilvis, R.S. Miettinen, T.A. (1985). Fatty acid compositions of serum lipids, erythrocytes, and platelets in insulin-dependent diabetic women. J Clin Endocrinol Metab, 61(4), 741-5.
  • Naresh Kumar, R., Sundaram, R., Shanthi, P., Sachdanandam, P. (2013). Protective role of 20- OH ecdysone on lipid profile and tissue fatty acid changes in streptozotocin induced diabetic rats. Eur J Pharmacol, 698, 489–498.
  • Wakil, S.J., Abu-Elheiga, L.A. (2009). Fatty acid metabolism: target for metabolic syndrome. J. Lipid Res, 50, 138–143.
  • Winder, W.W., Wilson, H.A., Hardie, D.G., Rasmussen, B.B., Hutber, C.A., Call, G.B., Clayton, R.D., Conley, L.M., Yoon, S., Zhou, B. (1997). Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J. Appl. Physiol, 82(1), 219–225.
  • Vessby, B. (2000). Dietary fat and insulin actions in humans. Br J Nutr, 83, 91–6.
  • Güvenç, M., Yılmaz, Ö., Tuzcu, M., Özşahin, A.D. (2009). Contribution of vitamin C and α-lipoic acid and their combination on the products level of desaturase enzymes in the lung and muscle tissues of poorly controlled experimental diabetic rats. Research Journal of Biological Sciences, 4(6), 710-715.
  • Yilmaz, O., Ersan, Y., Dilek Ozsahin, A., Ihsan Ozturk, A., Ozkan, Y. (2013). Consequences of the combined α-tocopherol, ascorbic acid and α-lipoic acid on the glutathione, cholesterol and fatty acid composition in muscle and liver of diabetic rats. Iran J Basic Med Sci, 16, 165-72.
  • Dobrzyń, A., Dobrzyń, P. (2006). Stearoyl- CoA desaturase--a new player in skeletal muscle metabolism regulation. J Physiol Pharmacol, 57 Suppl 10, 31-42.
  • Demir, E. (2013). Tip-1 ve Tip-2 diyabet oluşturulmuş sıçanlarda hiperglisemi üzerine çam ve acı badem yağlarının etkileri. Doktora Tezi, Fırat Üniversitesi, Türkiye.
  • Bal, R., Türk, G., Tuzcu, M., Yilmaz, O., Ozercan, I., Kuloglu, T., Gür, S., Nedzvetsky, V.S., Tykhomyrov, A.A., Andrievsky, G.V., Baydas, G., Naziroglu, M. (2011). Protective effects of nanostructures of hydrated C(60) fullerene on reproductive function in streptozotocin-diabetic male rats. Toxicology, 282, 69–81.
  • Nakamura, M.T., Nara, T.Y. (2004). Structure, function, and dietary regulation of delta 6, delta 5, and delta 9 desaturases. Annu. Rev. Nutr, 24, 345–376.
  • Rimoldi, O.J., Finarelli, G.S., Brenner, R.R. (2001). Effects of diabetes and insulin on hepatic Δ6 desaturase gene expression. Biochem Biophys Res Commun. 283(2), 323-6.
  • Montanaro, M.A., Bernasconi, A.M., González, M.S., Rimoldi, O.J., Brenner, R.R. (2005). Effects of fenofibrate and insulin on the biosynthesis of unsaturated fatty acids in streptozotocin diabetic rats. Prostaglandins Leukot Essent Fatty Acids, 73, 369– 378.
  • Jan, S., Guillou, H., D’Andrea, S., Daval, S., Bouriel, M., Rioux, V., Legrand, P. (2004). Myristic acid increases delta6-desaturase activity in cultured rat hepatocytes. Reprod. Nutr. Dev, 44, 131–140.
  • Sato, M., Adan, Y., Shibata, K., Shoji, Y., Sato, H., Imaizumi, K. (2001). Cloning of rat Δ6-desaturase and its regulation by dietary eicosapentaenoic or docosahexaenoic acid. World Rev Nutr Diet, 88, 196– 199.
  • Price, P.T., Nelson, C.M., Clarke, S.D. (2000). Omega-3 polyunsaturated fatty acid regulation of gene expression. Curr Opin Lipidol, 11, 3–7.
  • Parveen, K., Ishrat, T., Malik, S., Kausar, M.A., Siddiqui, W.A. (2013). Modulatory effects of Pycnogenol® in a rat model of insulin-dependent diabetes mellitus: biochemical, histological, and immunohistochemical evidences. Protoplasma, 250, 347–360.
  • Parveen, K., Khan, M.R., Mujeeb, M., Siddiqui, W.A. (2010). Protective effects of Pycnogenol on hyperglycemia-induced oxidative damage in the liver of type 2 diabetic rats. Chemico-Biological Interactions, 186, 219–227.
  • Leoni, V., Caccia, C. (2013). 24S-hydroxycholesterol in plasma: A marker of cholesterol turnover in neurodegenerative diseases. Biochimie, 95, 595-612.
  • Do, R., Kiss, R.S., Gaudet, D., Engert, J.C. (2009). Squalene synthase: a critical enzyme in the cholesterol biosynthesis pathway. Clin Genet, 75, 19–29.
  • Xiao, X., Song, B.L. (2013). SREBP: a novel therapeutic target. Acta Biochim Biophys Sin, 45, 2–10.
  • Chen, Q., Gruber, H., Pakenham, C., Ratnayake, W.M., Scoggan, K.A. (2009). Dietary phytosterols and phytostanols alter the expression of sterol- regulatory genes in SHRSP and WKY inbred rats. Ann Nutr Metab, 55, 341–350.
  • Oliva, M.E., Ferreira, M.R., Chicco, A., Lombardo, Y.B. (2013). Dietary Salba (Salvia hispanica L) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats. Prostaglandins Leukot Essent Fatty Acids, 89(5), 279-89.
  • Harnafi, H., Ramchoun, M., Tits, M., Wauters, J.N., Frederich, M., Angenot, L., Aziz, M., Alem, C., Amrani, S. (2013). Phenolic acid-rich extract of sweet basil restores cholesterol and triglycerides metabolism in high fat diet-fed mice: A comparison with fenofibrate. Biomedicine & Preventive Nutrition, 3, 393–397.
  • Harnafia, H., Azizb, M., Amrani, S. (2009). Sweet basil (Ocimum basilicum L.) improves lipid metabolism in hypercholesterolemic rats. e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism, 4, 181–186.
  • Jong, A., Plat, J., Mensink, R.P. (2003). Metabolic effects of plant sterols and stanols. J Nutr Biochem, 14, 362-369.
  • Connor, W.E., Lin, D.S., Pappu, A.S., Frohlich, J., Gerhard, G. (2005). Dietary sitostanol and campestanol: accumulation in the blood of humans with sitosterolemia and xanthomatosis and in rat tissues. Lipids, 40(9), 919-23.
  • Alhazzaa, R., Oen, J.J.J., Sinclair, A.J. (2013). Dietary phytosterols modify the sterols and fatty acid profile in a tissue-specific pattern. Journal of Functional Foods, 5, 829-837
  • Frey, S.K., Vogel, S. (2011). Vitamin A metabolism and adipose tissue biology. Nutrients, 3(1), 27-39.
  • Wolf, G. (2007). Serum retinol-binding protein: a link between obesity, insulin resistance, and type 2 diabetes. Nutr Rev, 65(5), 251-6.
  • Yang, Q., Graham, T.E., Mody, N., Preitner, F., Peroni, O.D., Zabolotny, J.M., Kotani, K., Quadro, L., Kahn, B.B. (2005). Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 436 (7049), 356-62.
  • Kim, T., Davis, J., Zhang, A.J., He, X., Mathews, S.T. (2009). Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem Biophys Res Commun, 388 (2), 377-82.
  • Soetikno, V., Sari, F.R., Sukumaran, V., Lakshmanan, A.P., Harima, M., Suzuki, K., Kawachi, H., Watanabe, K. (2013). Curcumin decreases renal triglyceride accumulation through AMPK-SREBP signaling pathway in streptozotocin-induced type 1 diabetic rats. J Nutr Biochem, 24 (5), 796-802.
  • Kuzelová, M., Adameová, A., Sumbalová, Z., Paulíková, I., Harcárová, A., Svec, P., Kucharská, J. (2008). The effect of simvastatin on coenzyme Q and antioxidant/oxidant balance in diabetic- hypercholesterolaemic rats. Gen. Physiol. Biophys, 27, 291-298.
  • Jain, S.K., Levine, S.N. (1995). Elevated lipid peroxidation and vitamin E-quinone levels in heart ventricles of streptozotocin-treated diabetic rats. Free Radic Biol Med, 18(2), 337-41.
  • Bjİrneboe, A., Bjİrneboe, G.E., Drevon, C.A. (1990). Absorption, transport and distribution of vitamin E. J Nutr, 120 (3), 233-42.
  • Rigotti, A. (2007). Absorption, transport, and tissue delivery of vitamin E. Mol Aspects Med, 28(5-6), 423-36.
  • Kucharska, J., Gvozdjakova, A., Stefek, M., Sotnikova, R., Sumbalova, Z. (2001). Adaptive changes of antioxidant status in development of experimental diabetes. Bratisl Lek Listy, 102 (11), 515-519.
  • Ferreira, F.M., Seiça, R., Oliveira, P.J., Coxito, P.M., Moreno, A.J., Palmeira, C.M., Santos, M.S. (2003). Diabetes induces metabolic adaptations in rat liver mitochondria: role of coenzyme Q and cardiolipin contents. Biochim Biophys Acta, 1639 (2), 113-20.
  • Akerboom, T.P., Sies, H. (1981). Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol, 77, 373-82.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Ersin Demir

Ökkeş Yılmaz Bu kişi benim

Yayımlanma Tarihi 6 Mayıs 2016
Yayımlandığı Sayı Yıl 2015 Cilt: 27 Sayı: 4

Kaynak Göster

APA Demir, E., & Yılmaz, Ö. (2016). Tip-1 Diyabet Oluşturulan Sıçanların Kas Dokusunda Bazı Biyokimyasal Değişikliklere Karşı Çam Yağının Etkisi. Marmara Fen Bilimleri Dergisi, 27(4), 114-124. https://doi.org/10.7240/mufbed.68767
AMA Demir E, Yılmaz Ö. Tip-1 Diyabet Oluşturulan Sıçanların Kas Dokusunda Bazı Biyokimyasal Değişikliklere Karşı Çam Yağının Etkisi. MFBD. Mayıs 2016;27(4):114-124. doi:10.7240/mufbed.68767
Chicago Demir, Ersin, ve Ökkeş Yılmaz. “Tip-1 Diyabet Oluşturulan Sıçanların Kas Dokusunda Bazı Biyokimyasal Değişikliklere Karşı Çam Yağının Etkisi”. Marmara Fen Bilimleri Dergisi 27, sy. 4 (Mayıs 2016): 114-24. https://doi.org/10.7240/mufbed.68767.
EndNote Demir E, Yılmaz Ö (01 Mayıs 2016) Tip-1 Diyabet Oluşturulan Sıçanların Kas Dokusunda Bazı Biyokimyasal Değişikliklere Karşı Çam Yağının Etkisi. Marmara Fen Bilimleri Dergisi 27 4 114–124.
IEEE E. Demir ve Ö. Yılmaz, “Tip-1 Diyabet Oluşturulan Sıçanların Kas Dokusunda Bazı Biyokimyasal Değişikliklere Karşı Çam Yağının Etkisi”, MFBD, c. 27, sy. 4, ss. 114–124, 2016, doi: 10.7240/mufbed.68767.
ISNAD Demir, Ersin - Yılmaz, Ökkeş. “Tip-1 Diyabet Oluşturulan Sıçanların Kas Dokusunda Bazı Biyokimyasal Değişikliklere Karşı Çam Yağının Etkisi”. Marmara Fen Bilimleri Dergisi 27/4 (Mayıs 2016), 114-124. https://doi.org/10.7240/mufbed.68767.
JAMA Demir E, Yılmaz Ö. Tip-1 Diyabet Oluşturulan Sıçanların Kas Dokusunda Bazı Biyokimyasal Değişikliklere Karşı Çam Yağının Etkisi. MFBD. 2016;27:114–124.
MLA Demir, Ersin ve Ökkeş Yılmaz. “Tip-1 Diyabet Oluşturulan Sıçanların Kas Dokusunda Bazı Biyokimyasal Değişikliklere Karşı Çam Yağının Etkisi”. Marmara Fen Bilimleri Dergisi, c. 27, sy. 4, 2016, ss. 114-2, doi:10.7240/mufbed.68767.
Vancouver Demir E, Yılmaz Ö. Tip-1 Diyabet Oluşturulan Sıçanların Kas Dokusunda Bazı Biyokimyasal Değişikliklere Karşı Çam Yağının Etkisi. MFBD. 2016;27(4):114-2.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr