Cell death which is one of the basic characteristics
of both prokaryotic and eukaryotic cells is encountered within the whole
organism. Programmed cell death (PCD) is a genetically controlled mechanism,
allows retired, dysfunctional, overproduced, irregularly developed or
genetically damaged cells to be destroyed safely for organism. It has been
first used in 1964 by Lockshin
and Williams. Animal apoptosis which is best characterized form of
PCD is used first in 1972 by Kerr et al. According to the recent biochemical and molecular studies PCD is
categorized in three basic groups: apoptosis, autophagy and necrosis. Plants do
not undergo apoptotic cell death, and cell death is classified into two groups
as vacuolar and necrotic cell death. In vacuolar cell death, alterations in
nucleus morphology, chromatin condensation, DNA fragmentation, protoplast
condensation, vacuolization, generation of reactive oxygen species, alterations
in the cytoskeleton and caspase like enzymatic activities are observed, as in
animal cells. Necrotic cell death has different features from vacuolar cell
death such as ATP depletion, cell and mitochondria swelling. PCD appears in
different organs and tissues of plants during vegetative-generative organ
development and under biotic-abiotic stress conditions. It occurs during the
development of plants such as regeneration of root cap cells, formation of
tracheal elements, formation of aerenchyma in hydrophytes, trichome
development, leaf senescence, sex determination and male-female organ development.
Biotic stress factors such as virus, bacteria, fungus and abiotic stress
factors such as UV light, drought, salinity, temperature, freezing, flood,
heavy metals, pesticides lead to PCD. Under biotic and abiotic stress factors,
the balance between antioxidant enzymes and generation of reactive oxygen
species (ROS) changes. ROS are free radicals and cause lipid peroxidation,
protein oxidation, nucleic acid damage and enzyme inhibition. These alterations
in the cellular structures lead to oxidative stress. ROS accumulation also
causes caspase-like activities by activating vacuolar processing enzymes,
metacaspases, saspases and phytaspases. These proteolytic enzymes execute cell
death and cut their substrates from specific amino acid residues such as
aspartic acid. PCD can be visualized by light, fluorescence and electron
microscopy. Besides DNA fragmentation during cell death is determined by TUNEL,
comet assay and gel electrophoresis. Moreover, cytoplasmic cytochrome c
identification, caspase like activities and alterations of mitochondrial
membrane potential can be identified by biochemical analyses. Although a lot of
morphological characteristic features are identified, plant cell death is still
not clear with regard to molecular aspects. Molecular
characterization of PCD will lead in the future to a better understanding of
the mechanisms of plant development and stress tolerance for developing high quality
plants.
Necrotic cell death programmed cell death reactive oxygen species vacuolar cell death
Programlı hücre ölümü (PHÖ) yaşlanmış, görevini yitirmiş, fazla
üretilmiş, düzensiz gelişmiş veya genetik olarak hasarlı hücrelerin, organizma
için güvenli bir şekilde yok edilmesini sağlayan, genetik olarak kontrol altında
olan bir ölüm mekanizmasıdır. PHÖ vejetatif-generatif organ gelişimi sırasında
ve biyotik-abiyotik stres şartları altında bitkilerin farklı organ ve
dokularında görülür. Bitkilerde gelişim sırasında hücre ölümü; kök şapkası
hücrelerinin değişimi, trakeal elementlerin oluşumu, su bitkilerinde
havalandırma parankimasının oluşumu, trikom gelişimi, yaprak senesensi, eşey
belirlenmesi ve üreme organlarının gelişimi sırasında ortaya çıkar. Bunun
yanında virüs, bakteri, mantar gibi biyotik ve UV ışık, kuraklık, tuzluluk,
sıcaklık, donma, sel, ağır metaller, pestisitler gibi birçok abiyotik stres
faktörü bitkilerde PHÖ’e yol açar. Bitkilerdeki PHÖ mekanizması hayvan
hücrelerindekine benzer şekilde nukleus morfolojisindeki değişiklikler,
kromatin yoğunlaşması, DNA fragmentasyonu, protoplastta büzülme, hücre
iskeletinde değişikler ve kaspaz benzeri enzimatik aktiviteler ile gelişir.
Bitkilerdeki PHÖ, vakuoler ve nekrotik hücre ölümü olmak üzere iki gruba
ayrılır. Vakuoler hücre ölümü, hidrolitik enzimleri içeren litik vakuollerin
hacminin artması ve tonoplastın parçalanarak hidrolitik enzimlerin sitoplazmaya
salınması ile gerçekleşir. Nekrotik hücre ölümünde ise hücre ve hücre organelleri
şişer, plazma zarı erken bozulma gösterir. Nekrotik ölümde mitokondri yapısı
bozulduğu için hücre solunumu gerçekleşemez, hücrede reaktif oksijen türleri
artar ve ATP azalır.
Nekrotik hücre ölümü programlı hücre ölümü reaktif oksijen türleri
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Derleme |
Yazarlar | |
Yayımlanma Tarihi | 31 Mart 2018 |
Kabul Tarihi | 13 Mart 2018 |
Yayımlandığı Sayı | Yıl 2018 Cilt: 30 Sayı: 1 |
Marmara Fen Bilimleri Dergisi
e-ISSN : 2146-5150
MU Fen Bilimleri Enstitüsü
Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr