Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’nin Değişen İkliminde Isıtma ve Soğutma Gün Derecelerinin Gelecek Projeksiyonları

Yıl 2018, Cilt: 30 Sayı: 3, 227 - 240, 30.09.2018
https://doi.org/10.7240/marufbd.427467

Öz

İklim değişikliğinin etkisiyle ısıtma ve soğutmaya bağlı gelecekteki
enerji talebi ihtiyacında oluşabilecek değişikliklerin öngörülmesinde gün
derecelerinden faydalanılması en pratik yöntemlerden biri olarak ortaya
çıkmaktadır. Bu çalışmada günümüzdeki gibi yoğun sera gazı emisyonunu içeren RCP8.5
senaryosuna göre Türkiye’de iklim değişikliğiyle birlikte gelecekte ısıtme ve
soğutma gün derecelerinde nasıl bir değişim olacağı öngörülmüştür. Bu amaçla
RegCM bölgesel iklim modeli kullanılarak elde edilen yüksek çözünürlüklü
sıcaklık değerleri ile hesaplanan ısıtma ve soğutma gün derece değerleri 2016-2035
ve 2046-2065 gelecek dönemleri için 1981-2000 referans dönemine göre kıyaslanmıştır.
Buna göre, ısıtma gün derece sayılarında tüm ülke genelinde bir azalma ve
soğutma gün derece sayılarında ise genel olarak bir artış olacağı
öngörülmüştür. Isıtma gün derece sayılarındaki bu azalmanın ve soğutma gün
derece sayılarındaki bu artışın 2046-2065 döneminde 2016-2035 dönemine kıyasla
daha fazla olacağı sonucuna varılmıştır. Çalışma sonucuna göre, ısıtma gün
derecelerinde her iki gelecek periyodu için en fazla azalış olacağı öngörülen
iller sırasıyla; Sivas, Kayseri, Kahramanmaraş ve Mersin; soğutma gün
derecelerinde en fazla artış olacağı öngörülen iller sırasıyla; 2016-2035
gelecek periyodu için Şanlıurfa, Diyarbakır, Adana, Manisa; 2046-2065 gelecek
periyodu için Şanlıurfa, Diyarbakır, Adana ve Hatay olarak ortaya çıkmaktadır. Bu
sıralamada dikkat çeken nokta, soğutma gün derecesinde 2016-2035 gelecek
periyodunda en fazla artışın beklendiği dördüncü il olan Manisa’nın yerine
2046-2065 gelecek periyodunda Hatay’ın yer almasıdır. Ayrıca, bu çalışma,
Türkiye için en yüksek çözünürlüklü iklim model çıktılarını kullanarak ısıtma
ve soğutma gün derecelerindeki muhtemel değişimleri araştıran ilk çalışmadır.

Kaynakça

  • [1] Auffhammer, M., & Mansur, E. T. (2014). Measuring climatic impacts on energy consumption: A review of the empirical literature. Energy Economics, 46, 522-530.
  • [2] Mansur, E. T., Mendelsohn, R., & Morrison, W. (2008). Climate change adaptation: A study of fuel choice and consumption in the US energy sector. Journal of Environmental Economics and Management, 55(2), 175-193.
  • [3] ASHRAE. (2001). ASHRAE Handbook: Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 544 pp.
  • [4] Badescu, V., & Zamfir, E. (1999). Degree-days, degree-hours and ambient temperature bin data from monthly-average temperatures (Romania). Energy Conversion and Management, 40(8), 885-900.
  • [5] Büyükalaca, O., Bulut, H., & Yılmaz, T. (2001). Analysis of variable-base heating and cooling degree-days for Turkey. Applied Energy, 69(4), 269-283.
  • [6] Christenson, M., Manz, H., & Gyalistras, D. (2006). Climate warming impact on degree-days and building energy demand in Switzerland. Energy Conversion and Management, 47(6), 671-686.
  • [7] Matzarakis, A., & Balafoutis, C. (2004). Heating degree‐days over Greece as an index of energy consumption. International Journal of Climatology, 24(14), 1817-1828.
  • [8] Dombaycı, Ö. A. (2009). Degree-days maps of Turkey for various base temperatures. Energy, 34(11), 1807-1812.
  • [9] Papakostas, K., Mavromatis, T., & Kyriakis, N. (2010). Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece. Renewable Energy, 35(7), 1376-1379.
  • [10] Al-Hadhrami, L. M. (2013). Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia. Renewable and Sustainable Energy Reviews, 27, 305-314.
  • [11] Cartalis, C., Synodinou, A., Proedrou, M., Tsangrassoulis, A., & Santamouris, M. (2001). Modifications in energy demand in urban areas as a result of climate changes: an assessment for the southeast Mediterranean region. Energy Conversion and Management, 42(14), 1647-1656.
  • [12] Hadley, S. W., Erickson, D. J., Hernandez, J. L., Broniak, C. T., & Blasing, T. J. (2006). Responses of energy use to climate change: A climate modeling study. Geophysical Research Letters, 33(17).
  • [13] Benestad, R. (2008). Heating degree days, cooling degree days, and precipitation in Europe: analysis for the CELECT-project. Report for the Norwegian Metereoroligical Institute.
  • [14] Xu, P., Huang, Y. J., Miller, N., Schlegel, N., & Shen, P. (2012). Impacts of climate change on building heating and cooling energy patterns in California. Energy, 44(1), 792-804.
  • [15] Zhou, Y., Eom, J., & Clarke, L. (2013). The effect of global climate change, population distribution, and climate mitigation on building energy use in the US and China. Climatic Change, 119(3-4), 979-992.
  • [16] Wang, H., & Chen, Q. (2014). Impact of climate change heating and cooling energy use in buildings in the United States. Energy and Buildings, 82, 428-436.
  • [17] Sailor, D. J. (2001). Relating residential and commercial sector electricity loads to climate—evaluating state level sensitivities and vulnerabilities. Energy, 26(7), 645-657.
  • [18] Pardo, A., Meneu, V., & Valor, E. (2002). Temperature and seasonality influences on Spanish electricity load. Energy Economics, 24(1), 55-70.
  • [19] Valor, E., Meneu, V., & Caselles, V. (2001). Daily air temperature and electricity load in Spain. Journal of Applied Meteorology, 40(8), 1413-1421.
  • [20] Martinaitis, V. (1998). Analytic calculation of degree-days for the regulated heating season. Energy and Buildings, 28(2), 185-189.
  • [21] OrtizBeviá, M. J., Sánchez-López, G., Alvarez-Garcìa, F. J., & RuizdeElvira, A. (2012). Evolution of heating and cooling degree-days in Spain: trends and interannual variability. Global and Planetary Change, 92, 236-247.
  • [22] Coşkun, M., Gürkan, H., Arabacı, H., Demircan, M., Eskioğlu, O., Şensoy, S.,Yazıcı, B. (2016). İklim değişikliğinin enerji tüketimine etkisi. 10.Uluslararası Temiz Enerji Sempozyumu (UTES), 24-26 Ekim 2016, İstanbul.
  • [23] TÜİK. (2013). Nüfus projeksiyonları, 2013-2075. http://www.tuik.gov.tr/PreHaberBultenleri.do?id=15844
  • [24] Tatli, H., Dalfes, H. N., & Menteş, Ş. S. (2004). A statistical downscaling method for monthly total precipitation over Turkey. International Journal of Climatology, 24(2), 161-180.
  • [25] Gosling, S. N., Dunn, R., Carrol, F., Christidis, N., Fullwood, J., Gusmao, D. D., ... & Kennedy, J. (2011). Climate: Observations, projections and impacts. The United Kingdom: Met Office.
  • [26] Turp, M. T., Öztürk, T., Türkeş, M., & Kurnaz, M. L. (2014). RegCM4.3.5 Bölgesel iklim modelini kullanarak Türkiye ve çevresi bölgelerin yakın gelecekteki hava sıcaklığı ve yağış klimatolojileri için öngörülen değişikliklerin incelenmesi. Ege Coğrafya Dergisi, 23(1), 1-24.
  • [27] Tatli, H. (2015). Downscaling standardized precipitation index via model output statistics. Atmósfera, 28(2), 83-98.
  • [28] Pal, J. S., Giorgi, F., Bi, X., Elguindi, N., Solmon, F., Rauscher, S. A., Gao, X., Francisco, R., Zakey, A., Winter, J., Ashfaq, M., Syed, F. S., Sloan, L. C., Bell, J. L., Diffenbaugh, N. S., Karmacharya, J., Konaré, A., Martinez, D., Da Rocha, R. P., Steiner, A. L. (2007). Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bulletin of the American Meteorological Society, 88(9), 1395-1409.
  • [29] Taylor, K. E., Stouffer, R. J., Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485-498.
  • [30] Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic Change, 109, 5-31.
  • [31] Riahi, K., Gruebler, A., and Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74 (7), 887-935.
  • [32] Day, T. (2006). Degree-days: theory and application. The Chartered Institution of Building Services Engineers, London, 106.
  • [33] EIA. (2016). Energy Units and Calculators Explained: Degree-Days. http://www.eia.gov/energyexplained/index.cfm?page=about_degree_days
  • [34] Aceituno, P. (1979). Statistical formula to estimate heating or cooling degree-days. Agricultural Meteorology, 20(3), 227-232.
  • [35] Ahrens, C. D. (2012). Essentials of Meteorology: An Invitation to the Atmosphere, 6th Edition. The United States of America: Brooks/Cole Cengage Learning.
  • [36] Bromley, M. (2009). Degree Days: Understanding Heating and Cooling Degree Days. http://www.degreedays.net/introduction
  • [37] TÜİK. (2015). İllerin aldığı, verdiği göç, net göç ve net göç hızı, 1980-2015. http://www.tuik.gov.tr/PreIstatistikTablo.do?istab_id=1595
  • [38] Kültür ve Turizm Bakanlığı. (2015a). Tesis istatistikleri. http://yigm.kulturturizm.gov.tr/TR,9859/tesis-istatistikleri.html
  • [39] Kültür ve Turizm Bakanlığı. (2015b). İllere göre sit alanları istatistiği. http://www.kulturvarliklari.gov.tr/TR,44974/illere-gore-sit-alanlari-istatistigi.html
  • [40] Giorgi, F. (2006). Climate change hot‐spots. Geophysical Research Letters, 33(8), 1-4.
  • [41] Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2), 90-104.
  • [42] Turp, M. T., Ozturk, T., Türkeş, M., Kurnaz, M. L. (2015). Assessment of projected changes in air temperature and precipitation over the Mediterranean region via multi-model ensemble mean of CMIP5 models. Journal of the Black Sea/Mediterranean Environment, Special Issue (21), 93-96.
  • [43] Ozturk, T., Ceber, Z. P., Türkeş, M., & Kurnaz, M. L. (2015). Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. International Journal of Climatology, 35(14), 4276-4292.
  • [44] Akbaş, A. (2014). Türkiye’de klimatolojik kuraklık olasılıklarının dağılışı. Türk Coğrafya Dergisi, 63, 1-7.

Future Projections of Heating and Cooling Degree Days in a Changing Climate of Turkey

Yıl 2018, Cilt: 30 Sayı: 3, 227 - 240, 30.09.2018
https://doi.org/10.7240/marufbd.427467

Öz

It is one of the most practical methods to take advantage
of the degree days to foresee the possible changes in the future energy demand
depending on heating and cooling due to the effects of climate change. In this
study, it is projected that how the heating and cooling degree days in Turkey will
covary with climate change under the RCP8.5 scenario, which consists in intense
greenhouse gas emissions as it is today. For this purpose, the heating and
cooling degree days calculated using the high resolution temperature values
​​obtained from the RegCM regional climate model were compared for the future
periods of 2016-2035 and 2046-2065 with respect to the reference period of
1981-2000. Accordingly, it was found that the number of heating degree days
will decrease in the whole country, whereas the number of cooling degree days
will generally increase. This reduction in heating degree days and the rise in
cooling degree days will be higher in the period of 2046-2065 rather than in
the period of 2016-2035. According to the result of the study, the utmost decrease
in the heating degree days will be seen in Sivas, Kayseri, Kahramanmaraş, and
Mersin for both future periods. For the period of 2016-2035, the highest increase
in the cooling degree days will be occurred in Şanlıurfa, Diyarbakır, Adana, and
Manisa respectively, whereas the maximum increase in the cooling degree days
will be experienced in Şanlıurfa, Diyarbakır, Adana and Hatay for the period of
2046-2065. The most remarkable point here is that Hatay is ranking as the
fourth in 2046-2065 period instead of Manisa, which has the fourth highest
increase in cooling degree days during the period of 2016-2035. In addition,
this study is the first research which investigates the prospective changes in
heating and cooling degree days using the highest resolution climate model
outputs for Turkey.

Kaynakça

  • [1] Auffhammer, M., & Mansur, E. T. (2014). Measuring climatic impacts on energy consumption: A review of the empirical literature. Energy Economics, 46, 522-530.
  • [2] Mansur, E. T., Mendelsohn, R., & Morrison, W. (2008). Climate change adaptation: A study of fuel choice and consumption in the US energy sector. Journal of Environmental Economics and Management, 55(2), 175-193.
  • [3] ASHRAE. (2001). ASHRAE Handbook: Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 544 pp.
  • [4] Badescu, V., & Zamfir, E. (1999). Degree-days, degree-hours and ambient temperature bin data from monthly-average temperatures (Romania). Energy Conversion and Management, 40(8), 885-900.
  • [5] Büyükalaca, O., Bulut, H., & Yılmaz, T. (2001). Analysis of variable-base heating and cooling degree-days for Turkey. Applied Energy, 69(4), 269-283.
  • [6] Christenson, M., Manz, H., & Gyalistras, D. (2006). Climate warming impact on degree-days and building energy demand in Switzerland. Energy Conversion and Management, 47(6), 671-686.
  • [7] Matzarakis, A., & Balafoutis, C. (2004). Heating degree‐days over Greece as an index of energy consumption. International Journal of Climatology, 24(14), 1817-1828.
  • [8] Dombaycı, Ö. A. (2009). Degree-days maps of Turkey for various base temperatures. Energy, 34(11), 1807-1812.
  • [9] Papakostas, K., Mavromatis, T., & Kyriakis, N. (2010). Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece. Renewable Energy, 35(7), 1376-1379.
  • [10] Al-Hadhrami, L. M. (2013). Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia. Renewable and Sustainable Energy Reviews, 27, 305-314.
  • [11] Cartalis, C., Synodinou, A., Proedrou, M., Tsangrassoulis, A., & Santamouris, M. (2001). Modifications in energy demand in urban areas as a result of climate changes: an assessment for the southeast Mediterranean region. Energy Conversion and Management, 42(14), 1647-1656.
  • [12] Hadley, S. W., Erickson, D. J., Hernandez, J. L., Broniak, C. T., & Blasing, T. J. (2006). Responses of energy use to climate change: A climate modeling study. Geophysical Research Letters, 33(17).
  • [13] Benestad, R. (2008). Heating degree days, cooling degree days, and precipitation in Europe: analysis for the CELECT-project. Report for the Norwegian Metereoroligical Institute.
  • [14] Xu, P., Huang, Y. J., Miller, N., Schlegel, N., & Shen, P. (2012). Impacts of climate change on building heating and cooling energy patterns in California. Energy, 44(1), 792-804.
  • [15] Zhou, Y., Eom, J., & Clarke, L. (2013). The effect of global climate change, population distribution, and climate mitigation on building energy use in the US and China. Climatic Change, 119(3-4), 979-992.
  • [16] Wang, H., & Chen, Q. (2014). Impact of climate change heating and cooling energy use in buildings in the United States. Energy and Buildings, 82, 428-436.
  • [17] Sailor, D. J. (2001). Relating residential and commercial sector electricity loads to climate—evaluating state level sensitivities and vulnerabilities. Energy, 26(7), 645-657.
  • [18] Pardo, A., Meneu, V., & Valor, E. (2002). Temperature and seasonality influences on Spanish electricity load. Energy Economics, 24(1), 55-70.
  • [19] Valor, E., Meneu, V., & Caselles, V. (2001). Daily air temperature and electricity load in Spain. Journal of Applied Meteorology, 40(8), 1413-1421.
  • [20] Martinaitis, V. (1998). Analytic calculation of degree-days for the regulated heating season. Energy and Buildings, 28(2), 185-189.
  • [21] OrtizBeviá, M. J., Sánchez-López, G., Alvarez-Garcìa, F. J., & RuizdeElvira, A. (2012). Evolution of heating and cooling degree-days in Spain: trends and interannual variability. Global and Planetary Change, 92, 236-247.
  • [22] Coşkun, M., Gürkan, H., Arabacı, H., Demircan, M., Eskioğlu, O., Şensoy, S.,Yazıcı, B. (2016). İklim değişikliğinin enerji tüketimine etkisi. 10.Uluslararası Temiz Enerji Sempozyumu (UTES), 24-26 Ekim 2016, İstanbul.
  • [23] TÜİK. (2013). Nüfus projeksiyonları, 2013-2075. http://www.tuik.gov.tr/PreHaberBultenleri.do?id=15844
  • [24] Tatli, H., Dalfes, H. N., & Menteş, Ş. S. (2004). A statistical downscaling method for monthly total precipitation over Turkey. International Journal of Climatology, 24(2), 161-180.
  • [25] Gosling, S. N., Dunn, R., Carrol, F., Christidis, N., Fullwood, J., Gusmao, D. D., ... & Kennedy, J. (2011). Climate: Observations, projections and impacts. The United Kingdom: Met Office.
  • [26] Turp, M. T., Öztürk, T., Türkeş, M., & Kurnaz, M. L. (2014). RegCM4.3.5 Bölgesel iklim modelini kullanarak Türkiye ve çevresi bölgelerin yakın gelecekteki hava sıcaklığı ve yağış klimatolojileri için öngörülen değişikliklerin incelenmesi. Ege Coğrafya Dergisi, 23(1), 1-24.
  • [27] Tatli, H. (2015). Downscaling standardized precipitation index via model output statistics. Atmósfera, 28(2), 83-98.
  • [28] Pal, J. S., Giorgi, F., Bi, X., Elguindi, N., Solmon, F., Rauscher, S. A., Gao, X., Francisco, R., Zakey, A., Winter, J., Ashfaq, M., Syed, F. S., Sloan, L. C., Bell, J. L., Diffenbaugh, N. S., Karmacharya, J., Konaré, A., Martinez, D., Da Rocha, R. P., Steiner, A. L. (2007). Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bulletin of the American Meteorological Society, 88(9), 1395-1409.
  • [29] Taylor, K. E., Stouffer, R. J., Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485-498.
  • [30] Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic Change, 109, 5-31.
  • [31] Riahi, K., Gruebler, A., and Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74 (7), 887-935.
  • [32] Day, T. (2006). Degree-days: theory and application. The Chartered Institution of Building Services Engineers, London, 106.
  • [33] EIA. (2016). Energy Units and Calculators Explained: Degree-Days. http://www.eia.gov/energyexplained/index.cfm?page=about_degree_days
  • [34] Aceituno, P. (1979). Statistical formula to estimate heating or cooling degree-days. Agricultural Meteorology, 20(3), 227-232.
  • [35] Ahrens, C. D. (2012). Essentials of Meteorology: An Invitation to the Atmosphere, 6th Edition. The United States of America: Brooks/Cole Cengage Learning.
  • [36] Bromley, M. (2009). Degree Days: Understanding Heating and Cooling Degree Days. http://www.degreedays.net/introduction
  • [37] TÜİK. (2015). İllerin aldığı, verdiği göç, net göç ve net göç hızı, 1980-2015. http://www.tuik.gov.tr/PreIstatistikTablo.do?istab_id=1595
  • [38] Kültür ve Turizm Bakanlığı. (2015a). Tesis istatistikleri. http://yigm.kulturturizm.gov.tr/TR,9859/tesis-istatistikleri.html
  • [39] Kültür ve Turizm Bakanlığı. (2015b). İllere göre sit alanları istatistiği. http://www.kulturvarliklari.gov.tr/TR,44974/illere-gore-sit-alanlari-istatistigi.html
  • [40] Giorgi, F. (2006). Climate change hot‐spots. Geophysical Research Letters, 33(8), 1-4.
  • [41] Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2), 90-104.
  • [42] Turp, M. T., Ozturk, T., Türkeş, M., Kurnaz, M. L. (2015). Assessment of projected changes in air temperature and precipitation over the Mediterranean region via multi-model ensemble mean of CMIP5 models. Journal of the Black Sea/Mediterranean Environment, Special Issue (21), 93-96.
  • [43] Ozturk, T., Ceber, Z. P., Türkeş, M., & Kurnaz, M. L. (2015). Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. International Journal of Climatology, 35(14), 4276-4292.
  • [44] Akbaş, A. (2014). Türkiye’de klimatolojik kuraklık olasılıklarının dağılışı. Türk Coğrafya Dergisi, 63, 1-7.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Nazan An Bu kişi benim 0000-0002-2705-9614

Mustafa Tufan Turp 0000-0002-3980-2153

Abdullah Akbaş 0000-0003-2024-0565

Ömer Öztürk Bu kişi benim 0000-0002-1886-0506

Mehmet Levent Kurnaz 0000-0003-3050-9847

Yayımlanma Tarihi 30 Eylül 2018
Kabul Tarihi 26 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 30 Sayı: 3

Kaynak Göster

APA An, N., Turp, M. T., Akbaş, A., Öztürk, Ö., vd. (2018). Türkiye’nin Değişen İkliminde Isıtma ve Soğutma Gün Derecelerinin Gelecek Projeksiyonları. Marmara Fen Bilimleri Dergisi, 30(3), 227-240. https://doi.org/10.7240/marufbd.427467
AMA An N, Turp MT, Akbaş A, Öztürk Ö, Kurnaz ML. Türkiye’nin Değişen İkliminde Isıtma ve Soğutma Gün Derecelerinin Gelecek Projeksiyonları. MFBD. Eylül 2018;30(3):227-240. doi:10.7240/marufbd.427467
Chicago An, Nazan, Mustafa Tufan Turp, Abdullah Akbaş, Ömer Öztürk, ve Mehmet Levent Kurnaz. “Türkiye’nin Değişen İkliminde Isıtma Ve Soğutma Gün Derecelerinin Gelecek Projeksiyonları”. Marmara Fen Bilimleri Dergisi 30, sy. 3 (Eylül 2018): 227-40. https://doi.org/10.7240/marufbd.427467.
EndNote An N, Turp MT, Akbaş A, Öztürk Ö, Kurnaz ML (01 Eylül 2018) Türkiye’nin Değişen İkliminde Isıtma ve Soğutma Gün Derecelerinin Gelecek Projeksiyonları. Marmara Fen Bilimleri Dergisi 30 3 227–240.
IEEE N. An, M. T. Turp, A. Akbaş, Ö. Öztürk, ve M. L. Kurnaz, “Türkiye’nin Değişen İkliminde Isıtma ve Soğutma Gün Derecelerinin Gelecek Projeksiyonları”, MFBD, c. 30, sy. 3, ss. 227–240, 2018, doi: 10.7240/marufbd.427467.
ISNAD An, Nazan vd. “Türkiye’nin Değişen İkliminde Isıtma Ve Soğutma Gün Derecelerinin Gelecek Projeksiyonları”. Marmara Fen Bilimleri Dergisi 30/3 (Eylül 2018), 227-240. https://doi.org/10.7240/marufbd.427467.
JAMA An N, Turp MT, Akbaş A, Öztürk Ö, Kurnaz ML. Türkiye’nin Değişen İkliminde Isıtma ve Soğutma Gün Derecelerinin Gelecek Projeksiyonları. MFBD. 2018;30:227–240.
MLA An, Nazan vd. “Türkiye’nin Değişen İkliminde Isıtma Ve Soğutma Gün Derecelerinin Gelecek Projeksiyonları”. Marmara Fen Bilimleri Dergisi, c. 30, sy. 3, 2018, ss. 227-40, doi:10.7240/marufbd.427467.
Vancouver An N, Turp MT, Akbaş A, Öztürk Ö, Kurnaz ML. Türkiye’nin Değişen İkliminde Isıtma ve Soğutma Gün Derecelerinin Gelecek Projeksiyonları. MFBD. 2018;30(3):227-40.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr