Research Article
BibTex RIS Cite
Year 2021, Volume: 10 Issue: 2, 118 - 133, 05.06.2021
https://doi.org/10.33714/masteb.827195

Abstract

References

  • Ahn, J., Park, S. H., Lee, S., Noh, Y. & Chang, D. (2018). Molten carbonate fuel cell (MCFC)-based hybrid propulsion systems for a liquefied hydrogen tanker. International Journal of Hydrogen Energy, 43(15): 7525–7537. https://doi.org/10.1016/j.ijhydene.2018.03.015
  • Alföldy, B., Lööv, J. B., Lagler, F., Mellqvist, J., Berg, N., Beecken, J., Weststrate, H., Duyzer, J., Bencs, L., Horemans, B., Cavalli, F., Putaud, J.-P., Janssens-Maenhout, G., Csordás, A. P., Van Grieken, R., Borowiak, A. & Hjorth, J. (2013). Measurements of air pollution emission factors for marine transportation in SECA. Atmospheric Measurement Techniques, 6(7): 1777-1791. https://doi.org/10.5194/amt-6-1777-2013
  • Ammar, N. R. & Seddiek, I. S. (2020). An environmental and economic analysis of emission reduction strategies for container ships with emphasis on the improved energy efficiency indexes. Environmental Science and Pollution Research, 27(18): 23342–23355. https://doi.org/10.1007/s11356-020-08861-7
  • Baldi, F., Moret, S., Tammi, K. & Maréchal, F. (2020). The role of solid oxide fuel cells in future ship energy systems. Energy, 194: 116811. https://doi.org/10.1016/j.energy.2019.116811
  • Bennabi, N., Charpentier, J. F., Menana, H., Billard, J. Y. & Genet, P. (2016). Hybrid propulsion systems for small ships: Context and challenges. In Proceedings - 2016 22nd International Conference on Electrical Machines, ICEM 2016 (pp. 2948–2954). https://doi.org/10.1109/ICELMACH.2016.7732943
  • Berstad, D., Anantharaman, R. & Nekså, P. (2013). Low-temperature CO2 capture technologies – Applications and potential. International Journal of Refrigeration, 36(5): 1403–1416. https://doi.org/10.1016/j.ijrefrig.2013.03.017
  • Brynolf, S., Magnusson, M., Fridell, E. & Andersson, K. (2014). Compliance possibilities for the future ECA regulations through the use of abatement technologies or change of fuels. Transportation Research Part D: Transport and Environment, 28(X): 6–18. https://doi.org/10.1016/j.trd.2013.12.001
  • Buonomano, A., Calise, F., d’Accadia, M. D., Palombo, A., & Vicidomini, M. (2015). Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review. Applied Energy, 156: 32–85. https://doi.org/10.1016/j.apenergy.2015.06.027
  • Deniz, C. & Zincir, B. (2016). Environmental and economical assessment of alternative marine fuels. Journal of Cleaner Production, 113: 438–449. https://doi.org/10.1016/j.jclepro.2015.11.089
  • Dere, C. & Deniz, C. (2019). Load optimization of central cooling system pumps of a container ship for the slow steaming conditions to enhance the energy efficiency. Journal of Cleaner Production, 222: 206–217. https://doi.org/10.1016/j.jclepro.2019.03.030
  • Dere, C. & Deniz, C. (2020). Effect analysis on energy efficiency enhancement of controlled cylinder liner temperatures in marine diesel engines with model based approach. Energy Conversion and Management, 220: 113015. https://doi.org/10.1016/j.enconman.2020.113015
  • De-Troya, J. J., Álvarez, C., Fernández-Garrido, C. & Carral, L. (2016). Analysing the possibilities of using fuel cells in ships. International Journal of Hydrogen Energy, 41(4): 2853–2866. https://doi.org/10.1016/j.ijhydene.2015.11.145
  • Díaz-de-Baldasano, M. C., Mateos, F. J., Núñez-Rivas, L. R. & Leo, T. J. (2014). Conceptual design of offshore platform supply vessel based on hybrid diesel generator-fuel cell power plant. Applied Energy, 116: 91–100. https://doi.org/10.1016/j.apenergy.2013.11.049
  • Fuel Cell Energy. (2017). SureSource 3000 Datasheet. URL https://www.fuelcellenergy.com/wp-content/uploads/2017/02/Product-Spec-SureSource-3000.pdf (accessed 21.08.20)
  • Ghenai, C., Bettayeb, M., Brdjanin, B. & Hamid, A. K. (2019). Hybrid solar PV/PEM fuel Cell/Diesel Generator power system for cruise ship: A case study in Stockholm, Sweden. Case Studies in Thermal Engineering, 14: 100497. https://doi.org/10.1016/j.csite.2019.100497
  • Hansson, J., Månsson, S., Brynolf, S. & Grahn, M. (2019). Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders. Biomass and Bioenergy, 126: 159-173 https://doi.org/10.1016/j.biombioe.2019.05.008
  • Harrould-Kolieb, E. (2008). Shipping Impacts on Climate: A Source with Solution. Oceana: Washington, USA.
  • IMO. (2011). Marine Environment Protection Committee (MEPC), 62nd session. URL http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Technical-and-Operational-Measures.aspx (accessed 11.10.20)
  • IMO. (2015). Third IMO Greenhouse Gas Study 2014. International Maritime Organization (IMO). London: International Maritime Organization. https://doi.org/10.1007/s10584-013-0912-3
  • IMO. (2016). Nitrogen Oxides (NOx) - Regulation 13. URL http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Nitrogen-oxides-(NOx)-%E2%80%93-Regulation-13.aspx (accessed 11.10.20)
  • IMO. (2018). Marine Environment Protection Committee (MEPC), 72nd session. URL http://www.imo.org/en/MediaCentre/MeetingSummaries/MEPC/Pages/MEPC-72nd-session.aspx (accessed 11.10.20).
  • Inal, O. B. & Deniz, C. (2018). Fuel cell availability for merchant ships. In Proceedings of the 3rd International Naval Architecture and Maritime Symposium (pp. 907–916). Istanbul, Turkey.
  • Inal, O. B. & Deniz, C. (2020). Assessment of fuel cell types for ships: Based on multi-criteria decision analysis. Journal of Cleaner Production, 265: 121734. https://doi.org/10.1016/j.jclepro.2020.121734
  • Inal, O.B. (2018). Analysis of the availability and applicability of fuel cell as a main power unit for a commercial ship. MSc Thesis. İstanbul Technical University, İstanbul, Turkey.
  • Karatuğ, Ç. & Durmuşoğlu, Y. (2020). Design of a solar photovoltaic system for a Ro-Ro ship and estimation of performance analysis : A case study. Solar Energy, 207: 1259–1268. https://doi.org/10.1016/j.solener.2020.07.037
  • Kim, Y. J. & Lee, M. C. (2017). Comparison of thermal performances of external and internal reforming molten carbonate fuel cells using numerical analyses. International Journal of Hydrogen Energy, 42(5): 3510–3520. https://doi.org/10.1016/j.ijhydene.2016.10.165
  • Lee, H., Jung, I., Roh, G., Na, Y. & Kang, H. (2020). Comparative analysis of on-board methane and methanol reforming systems combined with HT-PEM fuel cell and CO2 capture/liquefaction system for hydrogen fueled ship application. Energies, 13(1): 224. https://doi.org/10.3390/en13010224
  • Marefati, M. & Mehrpooya, M. (2019). Introducing and investigation of a combined molten carbonate fuel cell, thermoelectric generator, linear fresnel solar reflector and power turbine combined heating and power process. Journal of Cleaner Production, 240: 118247. https://doi.org/10.1016/j.jclepro.2019.118247
  • Martinić, F., Radica, G. & Barbir, F. (2018). Application and analysis of solid oxide fuel cells in ship energy systems. Brodogradnja, 69(4): 53–68. https://doi.org/10.21278/brod69405
  • McConnell, V. P. (2010). Now, voyager? The increasing marine use of fuel cells. Fuel Cells Bulletin, 2010(5): 12–17. https://doi.org/10.1016/S1464-2859(10)70166-8
  • Mehmeti, A., Santoni, F., Della Pietra, M. & McPhail, S. J. (2016). Life cycle assessment of molten carbonate fuel cells: State of the art and strategies for the future. Journal of Power Sources, 308: 97–108. https://doi.org/10.1016/j.jpowsour.2015.12.023
  • Mench, M. M. (2008). Fuel Cell Engines. WILEY. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470209769
  • MEPC. (2018). Resolution MEPC.308(73), Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (EEDI) for New Ships.
  • Moreno-Gutiérrez, J., Calderay, F., Saborido, N., Boile, M., Rodríguez Valero, R. & Durán-Grados, V. (2015). Methodologies for estimating shipping emissions and energy consumption: A comparative analysis of current methods. Energy, 86: 603–616. https://doi.org/10.1016/j.energy.2015.04.083
  • Muñoz de Escalona, J. M., Sánchez, D., Chacartegui, R. & Sánchez, T. (2011). A step-by-step methodology to construct a model of performance of molten carbonate fuel cells with internal reforming. International Journal of Hydrogen Energy, 36(24): 15739–15751. https://doi.org/10.1016/j.ijhydene.2011.08.094
  • Ovrum, E. & Dimopoulos, G. (2012). A validated dynamic model of the first marine molten carbonate fuel cell. Applied Thermal Engineering, 35: 15–28. https://doi.org/10.1016/j.applthermaleng.2011.09.023
  • Psaraftis, H. N. & Kontovas, C. A. (2014). Ship speed optimization: Concepts, models and combined speed-routing scenarios. Transportation Research Part C: Emerging Technologies, 44:s 52–69. https://doi.org/10.1016/j.trc.2014.03.001
  • Raptotasios, S. I., Sakellaridis, N. F., Papagiannakis, R. G. & Hountalas, D. T. (2015). Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR q. Applied Energy, 157: 814–823. https://doi.org/10.1016/j.apenergy.2014.12.041
  • Sohani, A., Naderi, S., Torabi, F., Sayyaadi, H., Golizadeh Akhlaghi, Y., Zhao, X., Talukdar, K. & Said, Z. (2020). Application based multi-objective performance optimization of a proton exchange membrane fuel cell. Journal of Cleaner Production, 252: 119567. https://doi.org/10.1016/j.jclepro.2019.119567
  • Strazza, C., Del Borghi, A., Costamagna, P., Traverso, A. & Santin, M. (2010). Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships. Applied Energy, 87(5): 1670–1678. https://doi.org/10.1016/j.apenergy.2009.10.012
  • Tronstad, T., Åstrand, H. H., Haugom, G. P. & Langfeldt, L. (2017). Study on the use of Fuel Cells in Shipping. DNV GL – Maritime: Hamburg, Germany. 106p.
  • Tse, L. K. C., Wilkins, S., McGlashan, N., Urban, B. & Martinez-Botas, R. (2011). Solid oxide fuel cell/gas turbine trigeneration system for marine applications. Journal of Power Sources, 196(6): 3149–3162. https://doi.org/10.1016/j.jpowsour.2010.11.099
  • Uyanık, T., Karatuğ, Ç. & Arslanoğlu, Y. (2020). Machine learning approach to ship fuel consumption: A case of container vessel. Transportation Research Part D: Transport and Environment, 84: 102389. https://doi.org/10.1016/j.trd.2020.102389
  • van Biert, L., Godjevac, M., Visser, K. & Aravind, P. V. (2016). A review of fuel cell systems for maritime applications. Journal of Power Sources, 327: 345–364. https://doi.org/10.1016/j.jpowsour.2016.07.007
  • Wee, J.-H. (2011). Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources. Applied Energy, 88(12): 4252–4263. https://doi.org/10.1016/j.apenergy.2011.05.043
  • Zhu, M., Yuen, K. F., Ge, J. W. & Li, K. X. (2018). Impact of maritime emissions trading system on fleet deployment and mitigation of CO2 emission. Transportation Research Part D: Transport and Environment, 62: 474–488. https://doi.org/10.1016/j.trd.2018.03.016
  • Zincir, B. A. (2020). Comparison of the carbon capture systems for on board application and voyage performance investigation by a case study. MSc. Thesis. Istanbul Technical University.

Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study

Year 2021, Volume: 10 Issue: 2, 118 - 133, 05.06.2021
https://doi.org/10.33714/masteb.827195

Abstract

Since sea transportation is one of the sources of air pollution and greenhouse gas emissions, so restrictive regulations are entering into force by the International Maritime Organisation to cope with the ship sourced emissions. Alternative energy generating systems are one of the key concepts and fuel cells can be one of the solutions for the future of the shipping industry by their fewer hazardous emissions compared to diesel engines. In this perspective, a Liquefied Natural Gas using molten carbonate fuel cell is evaluated instead of a conventional marine diesel engine for a chemical tanker ship. As a case study, the real navigation data for a tanker is gathered from the shipping company for the 27 voyages in 2018. Emissions are calculated respecting fuel types (marine diesel oil and heavy fuel oil) and designated Emission Control Areas for both diesel engine and fuel cell systems. The results show that more than 99% reduction in SOx, PM, and NOx emissions and a 33% reduction in CO2 emissions can be reached by the fuel cell system. At last, fuel cells seem very promising technologies especially for limited powered vessels under 5 MW for propulsion to use as main engines by complying with current and new coming emission limitations on the way of emission free shipping. 

References

  • Ahn, J., Park, S. H., Lee, S., Noh, Y. & Chang, D. (2018). Molten carbonate fuel cell (MCFC)-based hybrid propulsion systems for a liquefied hydrogen tanker. International Journal of Hydrogen Energy, 43(15): 7525–7537. https://doi.org/10.1016/j.ijhydene.2018.03.015
  • Alföldy, B., Lööv, J. B., Lagler, F., Mellqvist, J., Berg, N., Beecken, J., Weststrate, H., Duyzer, J., Bencs, L., Horemans, B., Cavalli, F., Putaud, J.-P., Janssens-Maenhout, G., Csordás, A. P., Van Grieken, R., Borowiak, A. & Hjorth, J. (2013). Measurements of air pollution emission factors for marine transportation in SECA. Atmospheric Measurement Techniques, 6(7): 1777-1791. https://doi.org/10.5194/amt-6-1777-2013
  • Ammar, N. R. & Seddiek, I. S. (2020). An environmental and economic analysis of emission reduction strategies for container ships with emphasis on the improved energy efficiency indexes. Environmental Science and Pollution Research, 27(18): 23342–23355. https://doi.org/10.1007/s11356-020-08861-7
  • Baldi, F., Moret, S., Tammi, K. & Maréchal, F. (2020). The role of solid oxide fuel cells in future ship energy systems. Energy, 194: 116811. https://doi.org/10.1016/j.energy.2019.116811
  • Bennabi, N., Charpentier, J. F., Menana, H., Billard, J. Y. & Genet, P. (2016). Hybrid propulsion systems for small ships: Context and challenges. In Proceedings - 2016 22nd International Conference on Electrical Machines, ICEM 2016 (pp. 2948–2954). https://doi.org/10.1109/ICELMACH.2016.7732943
  • Berstad, D., Anantharaman, R. & Nekså, P. (2013). Low-temperature CO2 capture technologies – Applications and potential. International Journal of Refrigeration, 36(5): 1403–1416. https://doi.org/10.1016/j.ijrefrig.2013.03.017
  • Brynolf, S., Magnusson, M., Fridell, E. & Andersson, K. (2014). Compliance possibilities for the future ECA regulations through the use of abatement technologies or change of fuels. Transportation Research Part D: Transport and Environment, 28(X): 6–18. https://doi.org/10.1016/j.trd.2013.12.001
  • Buonomano, A., Calise, F., d’Accadia, M. D., Palombo, A., & Vicidomini, M. (2015). Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review. Applied Energy, 156: 32–85. https://doi.org/10.1016/j.apenergy.2015.06.027
  • Deniz, C. & Zincir, B. (2016). Environmental and economical assessment of alternative marine fuels. Journal of Cleaner Production, 113: 438–449. https://doi.org/10.1016/j.jclepro.2015.11.089
  • Dere, C. & Deniz, C. (2019). Load optimization of central cooling system pumps of a container ship for the slow steaming conditions to enhance the energy efficiency. Journal of Cleaner Production, 222: 206–217. https://doi.org/10.1016/j.jclepro.2019.03.030
  • Dere, C. & Deniz, C. (2020). Effect analysis on energy efficiency enhancement of controlled cylinder liner temperatures in marine diesel engines with model based approach. Energy Conversion and Management, 220: 113015. https://doi.org/10.1016/j.enconman.2020.113015
  • De-Troya, J. J., Álvarez, C., Fernández-Garrido, C. & Carral, L. (2016). Analysing the possibilities of using fuel cells in ships. International Journal of Hydrogen Energy, 41(4): 2853–2866. https://doi.org/10.1016/j.ijhydene.2015.11.145
  • Díaz-de-Baldasano, M. C., Mateos, F. J., Núñez-Rivas, L. R. & Leo, T. J. (2014). Conceptual design of offshore platform supply vessel based on hybrid diesel generator-fuel cell power plant. Applied Energy, 116: 91–100. https://doi.org/10.1016/j.apenergy.2013.11.049
  • Fuel Cell Energy. (2017). SureSource 3000 Datasheet. URL https://www.fuelcellenergy.com/wp-content/uploads/2017/02/Product-Spec-SureSource-3000.pdf (accessed 21.08.20)
  • Ghenai, C., Bettayeb, M., Brdjanin, B. & Hamid, A. K. (2019). Hybrid solar PV/PEM fuel Cell/Diesel Generator power system for cruise ship: A case study in Stockholm, Sweden. Case Studies in Thermal Engineering, 14: 100497. https://doi.org/10.1016/j.csite.2019.100497
  • Hansson, J., Månsson, S., Brynolf, S. & Grahn, M. (2019). Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders. Biomass and Bioenergy, 126: 159-173 https://doi.org/10.1016/j.biombioe.2019.05.008
  • Harrould-Kolieb, E. (2008). Shipping Impacts on Climate: A Source with Solution. Oceana: Washington, USA.
  • IMO. (2011). Marine Environment Protection Committee (MEPC), 62nd session. URL http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Technical-and-Operational-Measures.aspx (accessed 11.10.20)
  • IMO. (2015). Third IMO Greenhouse Gas Study 2014. International Maritime Organization (IMO). London: International Maritime Organization. https://doi.org/10.1007/s10584-013-0912-3
  • IMO. (2016). Nitrogen Oxides (NOx) - Regulation 13. URL http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Nitrogen-oxides-(NOx)-%E2%80%93-Regulation-13.aspx (accessed 11.10.20)
  • IMO. (2018). Marine Environment Protection Committee (MEPC), 72nd session. URL http://www.imo.org/en/MediaCentre/MeetingSummaries/MEPC/Pages/MEPC-72nd-session.aspx (accessed 11.10.20).
  • Inal, O. B. & Deniz, C. (2018). Fuel cell availability for merchant ships. In Proceedings of the 3rd International Naval Architecture and Maritime Symposium (pp. 907–916). Istanbul, Turkey.
  • Inal, O. B. & Deniz, C. (2020). Assessment of fuel cell types for ships: Based on multi-criteria decision analysis. Journal of Cleaner Production, 265: 121734. https://doi.org/10.1016/j.jclepro.2020.121734
  • Inal, O.B. (2018). Analysis of the availability and applicability of fuel cell as a main power unit for a commercial ship. MSc Thesis. İstanbul Technical University, İstanbul, Turkey.
  • Karatuğ, Ç. & Durmuşoğlu, Y. (2020). Design of a solar photovoltaic system for a Ro-Ro ship and estimation of performance analysis : A case study. Solar Energy, 207: 1259–1268. https://doi.org/10.1016/j.solener.2020.07.037
  • Kim, Y. J. & Lee, M. C. (2017). Comparison of thermal performances of external and internal reforming molten carbonate fuel cells using numerical analyses. International Journal of Hydrogen Energy, 42(5): 3510–3520. https://doi.org/10.1016/j.ijhydene.2016.10.165
  • Lee, H., Jung, I., Roh, G., Na, Y. & Kang, H. (2020). Comparative analysis of on-board methane and methanol reforming systems combined with HT-PEM fuel cell and CO2 capture/liquefaction system for hydrogen fueled ship application. Energies, 13(1): 224. https://doi.org/10.3390/en13010224
  • Marefati, M. & Mehrpooya, M. (2019). Introducing and investigation of a combined molten carbonate fuel cell, thermoelectric generator, linear fresnel solar reflector and power turbine combined heating and power process. Journal of Cleaner Production, 240: 118247. https://doi.org/10.1016/j.jclepro.2019.118247
  • Martinić, F., Radica, G. & Barbir, F. (2018). Application and analysis of solid oxide fuel cells in ship energy systems. Brodogradnja, 69(4): 53–68. https://doi.org/10.21278/brod69405
  • McConnell, V. P. (2010). Now, voyager? The increasing marine use of fuel cells. Fuel Cells Bulletin, 2010(5): 12–17. https://doi.org/10.1016/S1464-2859(10)70166-8
  • Mehmeti, A., Santoni, F., Della Pietra, M. & McPhail, S. J. (2016). Life cycle assessment of molten carbonate fuel cells: State of the art and strategies for the future. Journal of Power Sources, 308: 97–108. https://doi.org/10.1016/j.jpowsour.2015.12.023
  • Mench, M. M. (2008). Fuel Cell Engines. WILEY. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470209769
  • MEPC. (2018). Resolution MEPC.308(73), Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (EEDI) for New Ships.
  • Moreno-Gutiérrez, J., Calderay, F., Saborido, N., Boile, M., Rodríguez Valero, R. & Durán-Grados, V. (2015). Methodologies for estimating shipping emissions and energy consumption: A comparative analysis of current methods. Energy, 86: 603–616. https://doi.org/10.1016/j.energy.2015.04.083
  • Muñoz de Escalona, J. M., Sánchez, D., Chacartegui, R. & Sánchez, T. (2011). A step-by-step methodology to construct a model of performance of molten carbonate fuel cells with internal reforming. International Journal of Hydrogen Energy, 36(24): 15739–15751. https://doi.org/10.1016/j.ijhydene.2011.08.094
  • Ovrum, E. & Dimopoulos, G. (2012). A validated dynamic model of the first marine molten carbonate fuel cell. Applied Thermal Engineering, 35: 15–28. https://doi.org/10.1016/j.applthermaleng.2011.09.023
  • Psaraftis, H. N. & Kontovas, C. A. (2014). Ship speed optimization: Concepts, models and combined speed-routing scenarios. Transportation Research Part C: Emerging Technologies, 44:s 52–69. https://doi.org/10.1016/j.trc.2014.03.001
  • Raptotasios, S. I., Sakellaridis, N. F., Papagiannakis, R. G. & Hountalas, D. T. (2015). Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR q. Applied Energy, 157: 814–823. https://doi.org/10.1016/j.apenergy.2014.12.041
  • Sohani, A., Naderi, S., Torabi, F., Sayyaadi, H., Golizadeh Akhlaghi, Y., Zhao, X., Talukdar, K. & Said, Z. (2020). Application based multi-objective performance optimization of a proton exchange membrane fuel cell. Journal of Cleaner Production, 252: 119567. https://doi.org/10.1016/j.jclepro.2019.119567
  • Strazza, C., Del Borghi, A., Costamagna, P., Traverso, A. & Santin, M. (2010). Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships. Applied Energy, 87(5): 1670–1678. https://doi.org/10.1016/j.apenergy.2009.10.012
  • Tronstad, T., Åstrand, H. H., Haugom, G. P. & Langfeldt, L. (2017). Study on the use of Fuel Cells in Shipping. DNV GL – Maritime: Hamburg, Germany. 106p.
  • Tse, L. K. C., Wilkins, S., McGlashan, N., Urban, B. & Martinez-Botas, R. (2011). Solid oxide fuel cell/gas turbine trigeneration system for marine applications. Journal of Power Sources, 196(6): 3149–3162. https://doi.org/10.1016/j.jpowsour.2010.11.099
  • Uyanık, T., Karatuğ, Ç. & Arslanoğlu, Y. (2020). Machine learning approach to ship fuel consumption: A case of container vessel. Transportation Research Part D: Transport and Environment, 84: 102389. https://doi.org/10.1016/j.trd.2020.102389
  • van Biert, L., Godjevac, M., Visser, K. & Aravind, P. V. (2016). A review of fuel cell systems for maritime applications. Journal of Power Sources, 327: 345–364. https://doi.org/10.1016/j.jpowsour.2016.07.007
  • Wee, J.-H. (2011). Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources. Applied Energy, 88(12): 4252–4263. https://doi.org/10.1016/j.apenergy.2011.05.043
  • Zhu, M., Yuen, K. F., Ge, J. W. & Li, K. X. (2018). Impact of maritime emissions trading system on fleet deployment and mitigation of CO2 emission. Transportation Research Part D: Transport and Environment, 62: 474–488. https://doi.org/10.1016/j.trd.2018.03.016
  • Zincir, B. A. (2020). Comparison of the carbon capture systems for on board application and voyage performance investigation by a case study. MSc. Thesis. Istanbul Technical University.
There are 47 citations in total.

Details

Primary Language English
Subjects Maritime Engineering (Other)
Journal Section Research Article
Authors

Ömer Berkehan İnal 0000-0003-1890-203X

Cengiz Deniz 0000-0001-9702-4583

Publication Date June 5, 2021
Submission Date November 17, 2020
Acceptance Date December 21, 2020
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

APA İnal, Ö. B., & Deniz, C. (2021). Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study. Marine Science and Technology Bulletin, 10(2), 118-133. https://doi.org/10.33714/masteb.827195
AMA İnal ÖB, Deniz C. Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study. Mar. Sci. Tech. Bull. June 2021;10(2):118-133. doi:10.33714/masteb.827195
Chicago İnal, Ömer Berkehan, and Cengiz Deniz. “Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study”. Marine Science and Technology Bulletin 10, no. 2 (June 2021): 118-33. https://doi.org/10.33714/masteb.827195.
EndNote İnal ÖB, Deniz C (June 1, 2021) Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study. Marine Science and Technology Bulletin 10 2 118–133.
IEEE Ö. B. İnal and C. Deniz, “Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study”, Mar. Sci. Tech. Bull., vol. 10, no. 2, pp. 118–133, 2021, doi: 10.33714/masteb.827195.
ISNAD İnal, Ömer Berkehan - Deniz, Cengiz. “Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study”. Marine Science and Technology Bulletin 10/2 (June 2021), 118-133. https://doi.org/10.33714/masteb.827195.
JAMA İnal ÖB, Deniz C. Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study. Mar. Sci. Tech. Bull. 2021;10:118–133.
MLA İnal, Ömer Berkehan and Cengiz Deniz. “Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study”. Marine Science and Technology Bulletin, vol. 10, no. 2, 2021, pp. 118-33, doi:10.33714/masteb.827195.
Vancouver İnal ÖB, Deniz C. Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study. Mar. Sci. Tech. Bull. 2021;10(2):118-33.

Cited By








Investigation of the adverse effects of slow steaming operations for ships
Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment
https://doi.org/10.1177/14750902221074191















27116