Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 10 Sayı: 4, 340 - 349, 29.12.2021
https://doi.org/10.33714/masteb.930338

Öz

Kaynakça

  • Abkowitz, M. A. (1969). Stability and motion control of ocean vehicles: Orgainzation, development, and initial notes of a course of instruction in the subject. Cambridge M. I. T. Press.
  • Alarçin, F., Demirel, H., Ertugrul Su, M., & Yurtseven, A. (2014). Modified pid control design for roll fin actuator of nonlinear modelling of the fishing boat. Polish Maritime Research, 21, 3–8. https://doi.org/10.2478/pomr-2014-0001.
  • Arslan, M. S. (2018). Design of an optimal controller for the roll stabilization of surface ships with active fins. Journal of ETA Maritime Science, 6, 291–305. https://doi.org/10.5505/jems.2018.50570.
  • Bańka, S., Brasel, M., Dworak, P., & Jaroszewski, K. (2015). A comparative and experimental study on gradient and genetic optimization algorithms for parameter identification of linear MIMO models of a drilling vessel. International Journal of Applied Mathematics and Computer Science, 25, 877–893. https://doi.org/10.1515/amcs-2015-0063
  • Bańka, S., Dworak, P., & Brasel, M. (2013). Linear multi-controller structure for control of a nonlinear MIMO model of a drill ship. IFAC Proceedings Volumes, 46, 557–562. https://doi.org/10.3182/20130708-3-CN-2036.00046
  • Belenky, V., Weems, K. M., Bassler, C. C., Dipper, M. J., Campbell, B. L., & Spyrou, K. J. (2012). Approaches to rare events in stochastic dynamics of ships. Probabilistic Engineering Mechanics, 28, 30–38. https://doi.org/10.1016/J.PROBENGMECH.2011.08.020
  • Blanke, M., & Christensen, A. C. (1993). Rudder-roll damping autopilot robustness to sway-yaw-roll couplings. Proceedings of the 10th Ship Control Systems Symposium, Canada, pp. 31.
  • Chai, W., Naess, A., & Leira, B. J. (2016). Stochastic nonlinear ship rolling in random beam seas by the path integration method. Probabilistic Engineering Mechanics, 44, 43–52. https://doi.org/10.1016/J.PROBENGMECH.2015.10.002
  • Chai, W., Naess, A., & Leira, B. J. (2015). Stochastic dynamic analysis and reliability of a vessel rolling in random beam seas. Journal of Ship Research, 59, 113–131. https://doi.org/10.5957/josr.59.2.140059
  • Demirel, H. (2013). Bir balıkçı teknesinin yalpa hareketinin dinamik analizi ve kontrolü [Dynamic analysis and control of the fishing boat's roll motion]. [M.Sc. Thesis. Yildiz Technical University].
  • Falzarano, J., Somayajula, A., & Seah, R. (2015). An overview of the prediction methods for roll damping of ships. Ocean Systems Engineering, 5, 55–76. https://doi.org/10.12989/ose.2015.5.2.055
  • Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. Wiley.
  • Fraga, R., & Liu, S. (2012). Shaping the ship yaw response by the state-space feedback gain. Advanced Materials Research, 566, 515–524. https://doi.org/10.4028/www.scientific.net/amr.566.515
  • Ghassemi, H., Dadmarzi, F., Ghadimi, P., & Ommani, B. (2010). Neural network-PID controller for roll fin stabilizer. Polish Maritime Research, 17, 23–28. https://doi.org/10.2478/v10012-010-0014-3
  • GHG-WG. (2009). Progress report on the work relating to fW coefficient in the energy efficiency design index (EEDI). Intersessional Meeting of the Greenhouse Gas Working Group 2nd session Agenda item 2.
  • Hou, X. –R., & Zou, Z. -J. (2016). Parameter identification of nonlinear roll motion equation for floating structures in irregular waves. Applied Ocean Research, 55, 66–75. https://doi.org/10.1016/J.APOR.2015.11.007
  • Hou, X. –R., Zou, Z. –J., & Liu, C. (2018). Nonparametric identification of nonlinear ship roll motion by using the motion response in irregular waves. Applied Ocean Research, 73, 88–99. https://doi.org/10.1016/J.APOR.2018.02.004
  • Huang, L., Han, Y., Duan, W., Zheng, Y., & Ma, S. (2018). Ship pitch-roll stabilization by active fins using a controller based on onboard hydrodynamic prediction. Ocean Engineering, 164, 212–27. https://doi.org/10.1016/J.OCEANENG.2018.06.014
  • Huang, Z., Zhuo, Y., & Li, T. (2017). Optimal tracking control of the ship course system with partially-unknown dynamics. ICCSS 2017 - 2017 International Conference on Information, Cybernetics, and Computational Social Systems, 0, 31–635. https://doi.org/10.1109/ICCSS.2017.8091491
  • IMO. (2019). Stability and Subdivision. Retrieved on Month Day, Year, from www.Imo.org/En/OurWork/Safety/StabilityAndSubdivision/Pages/DefaultAspx 2019
  • Irkal, M. A. R., Nallayarasu, S., & Bhattacharyya, S. K. (2016). CFD approach to roll damping of ship with bilge keel with experimental validation. Applied Ocean Research, 55, 1–17. https://doi.org/10.1016/j.apor.2015.11.008
  • Kim, J. H., & Kim, Y. H. (2011). Motion control of a cruise ship by using active stabilizing fins. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 225, 311–324. https://doi.org/10.1177/1475090211421268
  • Le, M. –D., Nguyen, S. –H., & Nguyen, L. -A. (2004). Study on a new and effective fuzzy PID ship autopilot. Artificial Life and Robotics, 8, 197–201. https://doi.org/10.1007/s10015-004-0313-9
  • Li, Q., Liu, J., Fu, J., Zhou, X., & Liao, C. (2018). Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine. Applied Thermal Engineering, 137, 710–720. https://doi.org/10.1016/J.APPLTHERMALENG.2018.04.017
  • Lihua, L., Peng, Z., Songtao, Z., Ming, J., & Jia, Y. (2018). Simulation analysis of fin stabilizer on ship roll control during turning motion. Ocean Engineering, 164, 733–748. https://doi.org/10.1016/J.OCEANENG.2018.07.015
  • Liu, Z., & Jin, H. (2013). Extended radiated energy method and its application to a ship roll stabilisation control system. Ocean Engineering, 72, 25–30. https://doi.org/10.1016/J.OCEANENG.2013.06.009
  • Liu, Z., Jin, H., Grimble, M. J., & Katebi, R. (2016). Ship forward speed loss minimization using nonlinear course keeping and roll motion controllers. Ocean Engineering, 113, 201–207. https://doi.org/10.1016/J.OCEANENG.2015.11.010
  • Lozowicki, D. L. T. (2001). On a ship track-keeping controller with roll damping capability. IFAC Proceedings Volumes, 34, 191–196. https://doi.org/.1037//0033-2909.I26.1.78
  • Lu, L. F., Sasa, K., Sasaki, W., Terada, D., Kano, T., & Mizojiri, T. (2017). Rough wave simulation and validation using onboard ship motion data in the Southern Hemisphere to enhance ship weather routing. Ocean Engineering, 144, 61–77. https://doi.org/10.1016/j.oceaneng.2017.08.037
  • Modares, H., & Lewis, F. L. (2014). Linear quadratic tracking control of partially-unknown continuous-time systems using reinforcement learning. IEEE Transactions on Automatic Control, 59, 3051–3056. https://doi.org/10.1109/TAC.2014.2317301.
  • Naik, S., & Ross, S. D. (2017). Geometry of escaping dynamics in nonlinear ship motion. Communications in Nonlinear Science and Numerical Simulation, 47, 48–70. https://doi.org/10.1016/J.CNSNS.2016.10.021
  • Perez, T., & Blanke, M. (2012). Ship roll damping control. Annual Reviews in Control, 36, 129–147. https://doi.org/10.1016/j.arcontrol.2012.03.010
  • Perez, T., Smogelif, N., Fossenf, T. I., & Sørensen, A. J. (2006). An overview of the marine systems simulator (MSS): A simulink® toolbox for marine control systems. Modeling, Identification and Control, 27, 259–275. https://doi.org/10.4173/mic.2006.4.4
  • Son, K., & Nomoto, K. (1981). On the coupled motion of steering and rolling of a high-speed container ship. Journal of the Society of Naval Architects of Japan, 150, 232-244. https://doi.org/10.2534/jjasnaoe1968.1981.150_232
  • Wassermann, S., Feder, D. –F., & Abdel-Maksoud, M. (2016). Estimation of ship roll damping—A comparison of the decay and the harmonic excited roll motion technique for a post panamax container ship. Ocean Engineering, 120, 371–382. https://doi.org/10.1016/J.OCEANENG.2016.02.009
  • Yu, L., Liu, S., Liu, F., & Wang, H. (2014). Energy optimization of the fin/rudder roll stabilization system based on the multi-objective genetic algorithm (MOGA). Journal of Marine Science and Application, 14, 202–207. https://doi.org/10.1007/s11804-015-1292-z
  • Zhang, X. G., & Zou, Z. J. (2011). Identification of Abkowitz model for ship manoeuvring motion using ε-support vector regression. Journal of Hydrodynamics, 23, 353–360. https://doi.org/10.1016/S1001-6058(10)60123-0
  • Zhou, Y., Ma, N., Shi, X., & Zhang, C. (2015). Direct calculation method of roll damping based on three-dimensional CFD approach. Journal of Hydrodynamics, 27, 176–186. https://doi.org/10.1016/S1001-6058(15)60470-X

Control of Ship Roll and Yaw Angles During Turning Motion

Yıl 2021, Cilt: 10 Sayı: 4, 340 - 349, 29.12.2021
https://doi.org/10.33714/masteb.930338

Öz

The aim of this paper is Ships are exposed to assorted hydrodynamic forces originating from internal and external influences. The adverse effect of rolling caused by turning motion should be reduced with anti-rolling systems, to ensure safe navigation. If this effect is not eliminated, it may prevent the ship from keeping its course safely. In this study, fin stabilizer system the computational analysis of the roll motion formed by the turning motion and wave effect is included in fin stabilizer system. The rudder motion that allows the ship to have the desired maneuvering angle; calculations of the fin system, which decreases the excessive roll moment, and the roll motion caused by these two effects are examined using MATLAB software. The analysis period has been determined as 300 seconds, which is the time to reach the desired turning angle of the ship. Linear quadratic tracking (LQT) algorithm has been used to solve partially unknown continuous-time problems such as roll motion in this study.

Kaynakça

  • Abkowitz, M. A. (1969). Stability and motion control of ocean vehicles: Orgainzation, development, and initial notes of a course of instruction in the subject. Cambridge M. I. T. Press.
  • Alarçin, F., Demirel, H., Ertugrul Su, M., & Yurtseven, A. (2014). Modified pid control design for roll fin actuator of nonlinear modelling of the fishing boat. Polish Maritime Research, 21, 3–8. https://doi.org/10.2478/pomr-2014-0001.
  • Arslan, M. S. (2018). Design of an optimal controller for the roll stabilization of surface ships with active fins. Journal of ETA Maritime Science, 6, 291–305. https://doi.org/10.5505/jems.2018.50570.
  • Bańka, S., Brasel, M., Dworak, P., & Jaroszewski, K. (2015). A comparative and experimental study on gradient and genetic optimization algorithms for parameter identification of linear MIMO models of a drilling vessel. International Journal of Applied Mathematics and Computer Science, 25, 877–893. https://doi.org/10.1515/amcs-2015-0063
  • Bańka, S., Dworak, P., & Brasel, M. (2013). Linear multi-controller structure for control of a nonlinear MIMO model of a drill ship. IFAC Proceedings Volumes, 46, 557–562. https://doi.org/10.3182/20130708-3-CN-2036.00046
  • Belenky, V., Weems, K. M., Bassler, C. C., Dipper, M. J., Campbell, B. L., & Spyrou, K. J. (2012). Approaches to rare events in stochastic dynamics of ships. Probabilistic Engineering Mechanics, 28, 30–38. https://doi.org/10.1016/J.PROBENGMECH.2011.08.020
  • Blanke, M., & Christensen, A. C. (1993). Rudder-roll damping autopilot robustness to sway-yaw-roll couplings. Proceedings of the 10th Ship Control Systems Symposium, Canada, pp. 31.
  • Chai, W., Naess, A., & Leira, B. J. (2016). Stochastic nonlinear ship rolling in random beam seas by the path integration method. Probabilistic Engineering Mechanics, 44, 43–52. https://doi.org/10.1016/J.PROBENGMECH.2015.10.002
  • Chai, W., Naess, A., & Leira, B. J. (2015). Stochastic dynamic analysis and reliability of a vessel rolling in random beam seas. Journal of Ship Research, 59, 113–131. https://doi.org/10.5957/josr.59.2.140059
  • Demirel, H. (2013). Bir balıkçı teknesinin yalpa hareketinin dinamik analizi ve kontrolü [Dynamic analysis and control of the fishing boat's roll motion]. [M.Sc. Thesis. Yildiz Technical University].
  • Falzarano, J., Somayajula, A., & Seah, R. (2015). An overview of the prediction methods for roll damping of ships. Ocean Systems Engineering, 5, 55–76. https://doi.org/10.12989/ose.2015.5.2.055
  • Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. Wiley.
  • Fraga, R., & Liu, S. (2012). Shaping the ship yaw response by the state-space feedback gain. Advanced Materials Research, 566, 515–524. https://doi.org/10.4028/www.scientific.net/amr.566.515
  • Ghassemi, H., Dadmarzi, F., Ghadimi, P., & Ommani, B. (2010). Neural network-PID controller for roll fin stabilizer. Polish Maritime Research, 17, 23–28. https://doi.org/10.2478/v10012-010-0014-3
  • GHG-WG. (2009). Progress report on the work relating to fW coefficient in the energy efficiency design index (EEDI). Intersessional Meeting of the Greenhouse Gas Working Group 2nd session Agenda item 2.
  • Hou, X. –R., & Zou, Z. -J. (2016). Parameter identification of nonlinear roll motion equation for floating structures in irregular waves. Applied Ocean Research, 55, 66–75. https://doi.org/10.1016/J.APOR.2015.11.007
  • Hou, X. –R., Zou, Z. –J., & Liu, C. (2018). Nonparametric identification of nonlinear ship roll motion by using the motion response in irregular waves. Applied Ocean Research, 73, 88–99. https://doi.org/10.1016/J.APOR.2018.02.004
  • Huang, L., Han, Y., Duan, W., Zheng, Y., & Ma, S. (2018). Ship pitch-roll stabilization by active fins using a controller based on onboard hydrodynamic prediction. Ocean Engineering, 164, 212–27. https://doi.org/10.1016/J.OCEANENG.2018.06.014
  • Huang, Z., Zhuo, Y., & Li, T. (2017). Optimal tracking control of the ship course system with partially-unknown dynamics. ICCSS 2017 - 2017 International Conference on Information, Cybernetics, and Computational Social Systems, 0, 31–635. https://doi.org/10.1109/ICCSS.2017.8091491
  • IMO. (2019). Stability and Subdivision. Retrieved on Month Day, Year, from www.Imo.org/En/OurWork/Safety/StabilityAndSubdivision/Pages/DefaultAspx 2019
  • Irkal, M. A. R., Nallayarasu, S., & Bhattacharyya, S. K. (2016). CFD approach to roll damping of ship with bilge keel with experimental validation. Applied Ocean Research, 55, 1–17. https://doi.org/10.1016/j.apor.2015.11.008
  • Kim, J. H., & Kim, Y. H. (2011). Motion control of a cruise ship by using active stabilizing fins. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 225, 311–324. https://doi.org/10.1177/1475090211421268
  • Le, M. –D., Nguyen, S. –H., & Nguyen, L. -A. (2004). Study on a new and effective fuzzy PID ship autopilot. Artificial Life and Robotics, 8, 197–201. https://doi.org/10.1007/s10015-004-0313-9
  • Li, Q., Liu, J., Fu, J., Zhou, X., & Liao, C. (2018). Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine. Applied Thermal Engineering, 137, 710–720. https://doi.org/10.1016/J.APPLTHERMALENG.2018.04.017
  • Lihua, L., Peng, Z., Songtao, Z., Ming, J., & Jia, Y. (2018). Simulation analysis of fin stabilizer on ship roll control during turning motion. Ocean Engineering, 164, 733–748. https://doi.org/10.1016/J.OCEANENG.2018.07.015
  • Liu, Z., & Jin, H. (2013). Extended radiated energy method and its application to a ship roll stabilisation control system. Ocean Engineering, 72, 25–30. https://doi.org/10.1016/J.OCEANENG.2013.06.009
  • Liu, Z., Jin, H., Grimble, M. J., & Katebi, R. (2016). Ship forward speed loss minimization using nonlinear course keeping and roll motion controllers. Ocean Engineering, 113, 201–207. https://doi.org/10.1016/J.OCEANENG.2015.11.010
  • Lozowicki, D. L. T. (2001). On a ship track-keeping controller with roll damping capability. IFAC Proceedings Volumes, 34, 191–196. https://doi.org/.1037//0033-2909.I26.1.78
  • Lu, L. F., Sasa, K., Sasaki, W., Terada, D., Kano, T., & Mizojiri, T. (2017). Rough wave simulation and validation using onboard ship motion data in the Southern Hemisphere to enhance ship weather routing. Ocean Engineering, 144, 61–77. https://doi.org/10.1016/j.oceaneng.2017.08.037
  • Modares, H., & Lewis, F. L. (2014). Linear quadratic tracking control of partially-unknown continuous-time systems using reinforcement learning. IEEE Transactions on Automatic Control, 59, 3051–3056. https://doi.org/10.1109/TAC.2014.2317301.
  • Naik, S., & Ross, S. D. (2017). Geometry of escaping dynamics in nonlinear ship motion. Communications in Nonlinear Science and Numerical Simulation, 47, 48–70. https://doi.org/10.1016/J.CNSNS.2016.10.021
  • Perez, T., & Blanke, M. (2012). Ship roll damping control. Annual Reviews in Control, 36, 129–147. https://doi.org/10.1016/j.arcontrol.2012.03.010
  • Perez, T., Smogelif, N., Fossenf, T. I., & Sørensen, A. J. (2006). An overview of the marine systems simulator (MSS): A simulink® toolbox for marine control systems. Modeling, Identification and Control, 27, 259–275. https://doi.org/10.4173/mic.2006.4.4
  • Son, K., & Nomoto, K. (1981). On the coupled motion of steering and rolling of a high-speed container ship. Journal of the Society of Naval Architects of Japan, 150, 232-244. https://doi.org/10.2534/jjasnaoe1968.1981.150_232
  • Wassermann, S., Feder, D. –F., & Abdel-Maksoud, M. (2016). Estimation of ship roll damping—A comparison of the decay and the harmonic excited roll motion technique for a post panamax container ship. Ocean Engineering, 120, 371–382. https://doi.org/10.1016/J.OCEANENG.2016.02.009
  • Yu, L., Liu, S., Liu, F., & Wang, H. (2014). Energy optimization of the fin/rudder roll stabilization system based on the multi-objective genetic algorithm (MOGA). Journal of Marine Science and Application, 14, 202–207. https://doi.org/10.1007/s11804-015-1292-z
  • Zhang, X. G., & Zou, Z. J. (2011). Identification of Abkowitz model for ship manoeuvring motion using ε-support vector regression. Journal of Hydrodynamics, 23, 353–360. https://doi.org/10.1016/S1001-6058(10)60123-0
  • Zhou, Y., Ma, N., Shi, X., & Zhang, C. (2015). Direct calculation method of roll damping based on three-dimensional CFD approach. Journal of Hydrodynamics, 27, 176–186. https://doi.org/10.1016/S1001-6058(15)60470-X
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deniz Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Burak Göksu 0000-0002-6152-0208

Kubilay Bayramoğlu 0000-0002-5838-6132

Yayımlanma Tarihi 29 Aralık 2021
Gönderilme Tarihi 30 Nisan 2021
Kabul Tarihi 17 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 4

Kaynak Göster

APA Göksu, B., & Bayramoğlu, K. (2021). Control of Ship Roll and Yaw Angles During Turning Motion. Marine Science and Technology Bulletin, 10(4), 340-349. https://doi.org/10.33714/masteb.930338
AMA Göksu B, Bayramoğlu K. Control of Ship Roll and Yaw Angles During Turning Motion. Mar. Sci. Tech. Bull. Aralık 2021;10(4):340-349. doi:10.33714/masteb.930338
Chicago Göksu, Burak, ve Kubilay Bayramoğlu. “Control of Ship Roll and Yaw Angles During Turning Motion”. Marine Science and Technology Bulletin 10, sy. 4 (Aralık 2021): 340-49. https://doi.org/10.33714/masteb.930338.
EndNote Göksu B, Bayramoğlu K (01 Aralık 2021) Control of Ship Roll and Yaw Angles During Turning Motion. Marine Science and Technology Bulletin 10 4 340–349.
IEEE B. Göksu ve K. Bayramoğlu, “Control of Ship Roll and Yaw Angles During Turning Motion”, Mar. Sci. Tech. Bull., c. 10, sy. 4, ss. 340–349, 2021, doi: 10.33714/masteb.930338.
ISNAD Göksu, Burak - Bayramoğlu, Kubilay. “Control of Ship Roll and Yaw Angles During Turning Motion”. Marine Science and Technology Bulletin 10/4 (Aralık 2021), 340-349. https://doi.org/10.33714/masteb.930338.
JAMA Göksu B, Bayramoğlu K. Control of Ship Roll and Yaw Angles During Turning Motion. Mar. Sci. Tech. Bull. 2021;10:340–349.
MLA Göksu, Burak ve Kubilay Bayramoğlu. “Control of Ship Roll and Yaw Angles During Turning Motion”. Marine Science and Technology Bulletin, c. 10, sy. 4, 2021, ss. 340-9, doi:10.33714/masteb.930338.
Vancouver Göksu B, Bayramoğlu K. Control of Ship Roll and Yaw Angles During Turning Motion. Mar. Sci. Tech. Bull. 2021;10(4):340-9.

27116