Araştırma Makalesi
BibTex RIS Kaynak Göster

Taguchi Metodu ve FEM Analizi ile DD13 Sacların MAG Bindirme Kaynağında Kaynak Parametrelerinin Optimizasyonu

Yıl 2022, Cilt: 3 Sayı: 3, 20 - 30, 30.12.2022
https://doi.org/10.52795/mateca.1190277

Öz

Bu çalışmada, otomobil salıncak imalatında kullanılan DD13 sac malzemelerinin GMAW (Gas Metal Arc Welding) kaynak yöntemi ile kaynak yöntemi, kaynak amperi ve kaynak hızı gibi farklı parametreler ile kaynatılmıştır. Kaynak parametrelerinin, kaynak dikişi sertliğinde en düşük sertlik değerini verecek optimize değer Taguchi yöntemiyle hesaplanmıştır. Ayrıca sertlik değişimine etkisi olduğu düşünülen ısı girdisi değerleri hesaplanmış, çıkan sonuçlar sertlik değişimi ve Taguchi optimizasyonu değerlerini yorumlamada kullanılmıştır. Yapılan deneysel çalışmalardan sonra çıkan optimize değer gerçek sonuçlar ile karşılaştırılmış ve doğrulama testi yapılmıştır. Optimize işlemi sonucunda en düşük sertlik değeri tahmini 172.98 HV0.1 olarak 420 min/mm kaynak hızında, 290 A ve 33.6 V parametreleri ile yapılan MAG kaynağında ulaşılmıştır. Doğrulama testi sonucu 173.4 HV0.1 ile tutarlı olduğu görülmüştür. Sonlu elemanlar analizi (FEM) bu değerler temel alınarak Simufact Welding 8.0 yazılımı ile yapılmıştır. Analiz sonucu kaynak makro yapısı, termal değişimler ve çarpılma miktarı incelenmiştir. Elde edilen sonuçlar doğrulama deneyleri ile yakınlık göstermektedir.

Kaynakça

  • 1. L. Tang, J. Wu, J. Liu, C. Jiang, W.-B. Shangguan, Topology Optimisation and Performance Calculation for Control Arms of a Suspension, Adv. Mech. Eng. 6 (2014) 734568. https://doi.org/10.1155/2014/734568.
  • 2. H.B. Zhang, R.J. Zhang, Y. Chang, Finite Element Analysis of Automobile Suspension Control Arm, Appl. Mech. Mater. 752–753 (2015) 859–863. https://doi.org/10.4028/www.scientific.net/AMM.752-753.859.
  • 3. H.B. Zhang, Y. Chang, R.J. Zhang, H.Y. Fan, Reverse Modeling of Vehicle Suspension Control Arm, Appl. Mech. Mater. 427–429 (2013) 1183–1186. https://doi.org/10.4028/www.scientific.net/AMM.427-429.1183.
  • 4. B.K. N, Design and Analysis of Sheet Metal Control Arm, Int. J. Sci. Res. 4 (2015) 1241–1248. https://doi.org/10.21275/v4i11.nov151451.
  • 5. James D. Halderman, Automotive Steering, Suspension & Alignment, 5. Edition, Pearson, New Jersey, 2010.
  • 6. M. Bouazara, Improvement in the Design of Automobile Upper Suspension Control Arms Using Aluminum Alloys, in: Damage Fract. Mech., Springer Netherlands, Dordrecht, 2009: pp. 101–112. https://doi.org/10.1007/978-90-481-2669-9_11.
  • 7. M. Shome, M. Tumuluru, Introduction to welding and joining of advanced high-strength steels (AHSS), in: M. Shome, M.B.T.-W. and J. of A.H.S.S. (AHSS) Tumuluru (Eds.), Woodhead Publishing, 2015: pp. 1–8. https://doi.org/https://doi.org/10.1016/B978-0-85709-436-0.00001-1.
  • 8. M.A. Wahab, Manual Metal Arc Welding and Gas Metal Arc Welding, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B.B.T.-C.M.P. Yilbas (Eds.), Elsevier, Oxford, 2014: pp. 49–76. https://doi.org/https://doi.org/10.1016/B978-0-08-096532-1.00610-5.
  • 9. Z. Boumerzoug, C. Derfouf, T. Baudin, Effect of Welding on Microstructure and Mechanical Properties of an Industrial Low Carbon Steel, Engineering. 02 (2010) 502–506. https://doi.org/10.4236/eng.2010.27066.
  • 10. P. Kah, R. Suoranta, J. Martikainen, Advanced gas metal arc welding processes, Int. J. Adv. Manuf. Technol. 67 (2013) 655–674. https://doi.org/10.1007/s00170-012-4513-5.
  • 11. J. Frei, B.T. Alexandrov, M. Rethmeier, Low heat input gas metal arc welding for dissimilar metal weld overlays part I: the heat-affected zone, Weld. World. 60 (2016) 459–473. https://doi.org/10.1007/s40194-016-0306-z.
  • 12. V. Tandon, M.A. Thombre, A.P. Patil, R. V. Taiwade, H. Vashishtha, Effect of Heat Input on the Microstructural, Mechanical, and Corrosion Properties of Dissimilar Weldment of Conventional Austenitic Stainless Steel and Low-Nickel Stainless Steel, Metallogr. Microstruct. Anal. 9 (2020) 668–677. https://doi.org/10.1007/s13632-020-00681-y.
  • 13. S. Madhavan, M. Kamaraj, B. Arivazhagan, A comparative study on the microstructure and mechanical properties of fusion welded 9 Cr-1 Mo steel, J. Mater. Res. Technol. 9 (2020) 2223–2229. https://doi.org/https://doi.org/10.1016/j.jmrt.2019.12.053.
  • 14. U. Çaligülü, H. Dikbaş, M. Taşkin, Microstructural characteristic of dissimilar welded components (AISI 430 ferritic-AISI 304 Austenitic Stainless Steels) by CO2 Laser Beam Welding (LBW), Gazi Univ. J. Sci. 25 (2012) 35–52.
  • 15. S. Selvi, A. Vishvaksenan, E. Rajasekar, Cold metal transfer (CMT) technology - An overview, Def. Technol. 14 (2018) 28–44. https://doi.org/10.1016/j.dt.2017.08.002.
  • 16. R. Talalaev, R. Veinthal, A. Laansoo, M. Sarkans, Cold metal transfer (CMT) welding of thin sheet metal products, Est. J. Eng. 18 (2012) 243. https://doi.org/10.3176/eng.2012.3.09.
  • 17. M. Grzybicki, J. Jakubowski, Comparative tests of steel car body sheet welds made using CMT and MIG/MAG methods, Weld. Int. 27 (2013) 610–615. https://doi.org/10.1080/09507116.2011.606147.
  • 18. M. Korzeniowski, T. Piwowarczyk, P. Kustroń, A. Czubak, Low-Energy Welding Methods Used for Semi-Automatic Thin-Walled Automotive Steels, Adv. Mater. Sci. 13 (2013). https://doi.org/10.2478/adms-2013-0010.
  • 19. Y. Liu, L. Zhang, Y. Chen, Application of Cold Metal Transition Technology in Automobile Manufacture, in: Proc. 2018 7th Int. Conf. Energy, Environ. Sustain. Dev. (ICEESD 2018), Atlantis Press, Paris, France, 2018: pp. 1170–1173. https://doi.org/10.2991/iceesd-18.2018.215.
  • 20. J. Subramanian, S. Ganguly, W. Suder, D. Mukherjee, Investigation of functional and aesthetic quality of weld for different arc modes in CMT, Int. Res. J. Eng. Technol. 07 (2020) 4497–4502.
  • 21. B. Chen, W. Xiao, L. Zhu, F. Zhang, Analysis on the Microstructure and Mechanical Properties of Welding Joint of Low Alloy Structural Steel Plate by Narrow Gap MAG, in: Proc. 2015 Int. Conf. Mechatronics, Electron. Ind. Control Eng., Atlantis Press, Paris, France, 2015. https://doi.org/10.2991/meic-15.2015.21.
  • 22. G. Samtaş, S. Korucu, Multiple optimisation of cutting parameters in milling of cryogenically treated Aluminium 6061-T651 alloy with cryogenic and normal cutting inserts, Surf. Topogr. Metrol. Prop. 9 (2021) 045003. https://doi.org/10.1088/2051-672X/ac2796.
  • 23. H.R. Ghanbari, M. Shariati, E. Sanati, R. Masoudi Nejad, Effects of spot welded parameters on fatigue behavior of ferrite-martensite dual-phase steel and hybrid joints, Eng. Fail. Anal. 134 (2022) 106079. https://doi.org/10.1016/j.engfailanal.2022.106079.
  • 24. A.K. Pattanaik, S.N. Panda, K. Pal, D. Mishra, A Comparative Investigation to Process Parameter Optimization for Spot Welding Using Taguchi Based Grey Relational Analysis and Metaheuristics, in: Mater. Today Proc., Elsevier Ltd, 2018: pp. 11408–11414. https://doi.org/10.1016/j.matpr.2018.02.108.
  • 25. G. Samtaş, Optimisation of cutting parameters during the face milling of AA5083-H111 with coated and uncoated inserts using Taguchi method, Int. J. Mach. Mach. Mater. 17 (2015) 211–232. https://doi.org/10.1504/IJMMM.2015.071993.

Optimization of Welding Parameters in MAG Lap Welding of DD13 Sheet Metal with Taguchi Method and FEM Analysis

Yıl 2022, Cilt: 3 Sayı: 3, 20 - 30, 30.12.2022
https://doi.org/10.52795/mateca.1190277

Öz

In this study, DD13 sheet materials used in automobile swing manufacturing were welded with GMAW (Gas Metal Arc Welding) welding method with different parameters such as welding method, welding amperage, and welding speed. The optimized value of the welding parameters, which will give the lowest hardness value in the weld seam hardness, was calculated by the Taguchi method. In addition, the heat input values that are thought to affect the hardness change were calculated, and the results were used to interpret the hardness change and Taguchi optimization values. After the experimental studies, the optimized value was compared with the actual results, and the verification test was performed. As a result of the optimization process, the lowest hardness value was estimated as 172.98 HV0.1 in MAG welding performed at 420 min/mm welding speed, 290 A, and 33.6 V parameters. The validation test result was found to be consistent with 173.4 HV0.1. Based on these values, finite element analysis (FEM) was performed with Simufact Welding 8.0 software. As a result of the investigation, the weld macrostructure, thermal changes, and the amount of distortion were examined. The results obtained are in agreement with the validation experiments.

Teşekkür

Thanks to NETFORM Engineering Machinery Metal Ltd. for their support in the finite element analysis of this study.

Kaynakça

  • 1. L. Tang, J. Wu, J. Liu, C. Jiang, W.-B. Shangguan, Topology Optimisation and Performance Calculation for Control Arms of a Suspension, Adv. Mech. Eng. 6 (2014) 734568. https://doi.org/10.1155/2014/734568.
  • 2. H.B. Zhang, R.J. Zhang, Y. Chang, Finite Element Analysis of Automobile Suspension Control Arm, Appl. Mech. Mater. 752–753 (2015) 859–863. https://doi.org/10.4028/www.scientific.net/AMM.752-753.859.
  • 3. H.B. Zhang, Y. Chang, R.J. Zhang, H.Y. Fan, Reverse Modeling of Vehicle Suspension Control Arm, Appl. Mech. Mater. 427–429 (2013) 1183–1186. https://doi.org/10.4028/www.scientific.net/AMM.427-429.1183.
  • 4. B.K. N, Design and Analysis of Sheet Metal Control Arm, Int. J. Sci. Res. 4 (2015) 1241–1248. https://doi.org/10.21275/v4i11.nov151451.
  • 5. James D. Halderman, Automotive Steering, Suspension & Alignment, 5. Edition, Pearson, New Jersey, 2010.
  • 6. M. Bouazara, Improvement in the Design of Automobile Upper Suspension Control Arms Using Aluminum Alloys, in: Damage Fract. Mech., Springer Netherlands, Dordrecht, 2009: pp. 101–112. https://doi.org/10.1007/978-90-481-2669-9_11.
  • 7. M. Shome, M. Tumuluru, Introduction to welding and joining of advanced high-strength steels (AHSS), in: M. Shome, M.B.T.-W. and J. of A.H.S.S. (AHSS) Tumuluru (Eds.), Woodhead Publishing, 2015: pp. 1–8. https://doi.org/https://doi.org/10.1016/B978-0-85709-436-0.00001-1.
  • 8. M.A. Wahab, Manual Metal Arc Welding and Gas Metal Arc Welding, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B.B.T.-C.M.P. Yilbas (Eds.), Elsevier, Oxford, 2014: pp. 49–76. https://doi.org/https://doi.org/10.1016/B978-0-08-096532-1.00610-5.
  • 9. Z. Boumerzoug, C. Derfouf, T. Baudin, Effect of Welding on Microstructure and Mechanical Properties of an Industrial Low Carbon Steel, Engineering. 02 (2010) 502–506. https://doi.org/10.4236/eng.2010.27066.
  • 10. P. Kah, R. Suoranta, J. Martikainen, Advanced gas metal arc welding processes, Int. J. Adv. Manuf. Technol. 67 (2013) 655–674. https://doi.org/10.1007/s00170-012-4513-5.
  • 11. J. Frei, B.T. Alexandrov, M. Rethmeier, Low heat input gas metal arc welding for dissimilar metal weld overlays part I: the heat-affected zone, Weld. World. 60 (2016) 459–473. https://doi.org/10.1007/s40194-016-0306-z.
  • 12. V. Tandon, M.A. Thombre, A.P. Patil, R. V. Taiwade, H. Vashishtha, Effect of Heat Input on the Microstructural, Mechanical, and Corrosion Properties of Dissimilar Weldment of Conventional Austenitic Stainless Steel and Low-Nickel Stainless Steel, Metallogr. Microstruct. Anal. 9 (2020) 668–677. https://doi.org/10.1007/s13632-020-00681-y.
  • 13. S. Madhavan, M. Kamaraj, B. Arivazhagan, A comparative study on the microstructure and mechanical properties of fusion welded 9 Cr-1 Mo steel, J. Mater. Res. Technol. 9 (2020) 2223–2229. https://doi.org/https://doi.org/10.1016/j.jmrt.2019.12.053.
  • 14. U. Çaligülü, H. Dikbaş, M. Taşkin, Microstructural characteristic of dissimilar welded components (AISI 430 ferritic-AISI 304 Austenitic Stainless Steels) by CO2 Laser Beam Welding (LBW), Gazi Univ. J. Sci. 25 (2012) 35–52.
  • 15. S. Selvi, A. Vishvaksenan, E. Rajasekar, Cold metal transfer (CMT) technology - An overview, Def. Technol. 14 (2018) 28–44. https://doi.org/10.1016/j.dt.2017.08.002.
  • 16. R. Talalaev, R. Veinthal, A. Laansoo, M. Sarkans, Cold metal transfer (CMT) welding of thin sheet metal products, Est. J. Eng. 18 (2012) 243. https://doi.org/10.3176/eng.2012.3.09.
  • 17. M. Grzybicki, J. Jakubowski, Comparative tests of steel car body sheet welds made using CMT and MIG/MAG methods, Weld. Int. 27 (2013) 610–615. https://doi.org/10.1080/09507116.2011.606147.
  • 18. M. Korzeniowski, T. Piwowarczyk, P. Kustroń, A. Czubak, Low-Energy Welding Methods Used for Semi-Automatic Thin-Walled Automotive Steels, Adv. Mater. Sci. 13 (2013). https://doi.org/10.2478/adms-2013-0010.
  • 19. Y. Liu, L. Zhang, Y. Chen, Application of Cold Metal Transition Technology in Automobile Manufacture, in: Proc. 2018 7th Int. Conf. Energy, Environ. Sustain. Dev. (ICEESD 2018), Atlantis Press, Paris, France, 2018: pp. 1170–1173. https://doi.org/10.2991/iceesd-18.2018.215.
  • 20. J. Subramanian, S. Ganguly, W. Suder, D. Mukherjee, Investigation of functional and aesthetic quality of weld for different arc modes in CMT, Int. Res. J. Eng. Technol. 07 (2020) 4497–4502.
  • 21. B. Chen, W. Xiao, L. Zhu, F. Zhang, Analysis on the Microstructure and Mechanical Properties of Welding Joint of Low Alloy Structural Steel Plate by Narrow Gap MAG, in: Proc. 2015 Int. Conf. Mechatronics, Electron. Ind. Control Eng., Atlantis Press, Paris, France, 2015. https://doi.org/10.2991/meic-15.2015.21.
  • 22. G. Samtaş, S. Korucu, Multiple optimisation of cutting parameters in milling of cryogenically treated Aluminium 6061-T651 alloy with cryogenic and normal cutting inserts, Surf. Topogr. Metrol. Prop. 9 (2021) 045003. https://doi.org/10.1088/2051-672X/ac2796.
  • 23. H.R. Ghanbari, M. Shariati, E. Sanati, R. Masoudi Nejad, Effects of spot welded parameters on fatigue behavior of ferrite-martensite dual-phase steel and hybrid joints, Eng. Fail. Anal. 134 (2022) 106079. https://doi.org/10.1016/j.engfailanal.2022.106079.
  • 24. A.K. Pattanaik, S.N. Panda, K. Pal, D. Mishra, A Comparative Investigation to Process Parameter Optimization for Spot Welding Using Taguchi Based Grey Relational Analysis and Metaheuristics, in: Mater. Today Proc., Elsevier Ltd, 2018: pp. 11408–11414. https://doi.org/10.1016/j.matpr.2018.02.108.
  • 25. G. Samtaş, Optimisation of cutting parameters during the face milling of AA5083-H111 with coated and uncoated inserts using Taguchi method, Int. J. Mach. Mach. Mater. 17 (2015) 211–232. https://doi.org/10.1504/IJMMM.2015.071993.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Serkan Apay 0000-0003-4624-9082

Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 17 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 3

Kaynak Göster

APA Apay, S. (2022). Optimization of Welding Parameters in MAG Lap Welding of DD13 Sheet Metal with Taguchi Method and FEM Analysis. İmalat Teknolojileri Ve Uygulamaları, 3(3), 20-30. https://doi.org/10.52795/mateca.1190277
AMA Apay S. Optimization of Welding Parameters in MAG Lap Welding of DD13 Sheet Metal with Taguchi Method and FEM Analysis. MATECA. Aralık 2022;3(3):20-30. doi:10.52795/mateca.1190277
Chicago Apay, Serkan. “Optimization of Welding Parameters in MAG Lap Welding of DD13 Sheet Metal With Taguchi Method and FEM Analysis”. İmalat Teknolojileri Ve Uygulamaları 3, sy. 3 (Aralık 2022): 20-30. https://doi.org/10.52795/mateca.1190277.
EndNote Apay S (01 Aralık 2022) Optimization of Welding Parameters in MAG Lap Welding of DD13 Sheet Metal with Taguchi Method and FEM Analysis. İmalat Teknolojileri ve Uygulamaları 3 3 20–30.
IEEE S. Apay, “Optimization of Welding Parameters in MAG Lap Welding of DD13 Sheet Metal with Taguchi Method and FEM Analysis”, MATECA, c. 3, sy. 3, ss. 20–30, 2022, doi: 10.52795/mateca.1190277.
ISNAD Apay, Serkan. “Optimization of Welding Parameters in MAG Lap Welding of DD13 Sheet Metal With Taguchi Method and FEM Analysis”. İmalat Teknolojileri ve Uygulamaları 3/3 (Aralık 2022), 20-30. https://doi.org/10.52795/mateca.1190277.
JAMA Apay S. Optimization of Welding Parameters in MAG Lap Welding of DD13 Sheet Metal with Taguchi Method and FEM Analysis. MATECA. 2022;3:20–30.
MLA Apay, Serkan. “Optimization of Welding Parameters in MAG Lap Welding of DD13 Sheet Metal With Taguchi Method and FEM Analysis”. İmalat Teknolojileri Ve Uygulamaları, c. 3, sy. 3, 2022, ss. 20-30, doi:10.52795/mateca.1190277.
Vancouver Apay S. Optimization of Welding Parameters in MAG Lap Welding of DD13 Sheet Metal with Taguchi Method and FEM Analysis. MATECA. 2022;3(3):20-3.