Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2015, Cilt: 3 Sayı: 1, 53 - 57, 15.05.2015
https://doi.org/10.36753/mathenot.421210

Öz

Kaynakça

  • [1] Bieberbach, L., Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbil- ¨ dung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys-Math. Kl., (1916), 940-955.
  • [2] de Branges, L., A proof of the Bieberbach conjecture, Acta Mathematica 154 (1) (1985), 137-152.
  • [3] Duren, P.L., Univalent Functions, Die Grundlehren der mathematischen Wiesseschaften 259. Springer-Verlag, Berlin-Heidelberg-New York, 1983.
  • [4] Koebe, P., Uber die Uniformisierung der algebraischen Kurven durch automorphe Funktionen ¨ mit imaginarer Substitutionsgruppe, Nachr. Kgl. Ges. Wiss. Göttingen, Math-Phys. Kl.(1909), 68-76.
  • [5] Löwner, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I. Math. Ann. 89 (1923), 103-121.
  • [6] Pommerenke, Chr., Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
  • [7] Schiffer, M., A method of variation within the family of simple functions, Proc. London Math. Soc. 44 (1938), 432-449.

THE SCHIFFER’S THEOREM RE-VISITED

Yıl 2015, Cilt: 3 Sayı: 1, 53 - 57, 15.05.2015
https://doi.org/10.36753/mathenot.421210

Öz

In this paper, we consider Schiffer’s differential equation for the
functions in the class of normalized analytic and univalent functions which
maximize the second and the third coefficients. 

Kaynakça

  • [1] Bieberbach, L., Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbil- ¨ dung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys-Math. Kl., (1916), 940-955.
  • [2] de Branges, L., A proof of the Bieberbach conjecture, Acta Mathematica 154 (1) (1985), 137-152.
  • [3] Duren, P.L., Univalent Functions, Die Grundlehren der mathematischen Wiesseschaften 259. Springer-Verlag, Berlin-Heidelberg-New York, 1983.
  • [4] Koebe, P., Uber die Uniformisierung der algebraischen Kurven durch automorphe Funktionen ¨ mit imaginarer Substitutionsgruppe, Nachr. Kgl. Ges. Wiss. Göttingen, Math-Phys. Kl.(1909), 68-76.
  • [5] Löwner, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I. Math. Ann. 89 (1923), 103-121.
  • [6] Pommerenke, Chr., Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
  • [7] Schiffer, M., A method of variation within the family of simple functions, Proc. London Math. Soc. 44 (1938), 432-449.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Faruk Uçar

Yusuf Avcı Bu kişi benim

Yayımlanma Tarihi 15 Mayıs 2015
Gönderilme Tarihi 12 Ekim 2014
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 1

Kaynak Göster

APA Uçar, F., & Avcı, Y. (2015). THE SCHIFFER’S THEOREM RE-VISITED. Mathematical Sciences and Applications E-Notes, 3(1), 53-57. https://doi.org/10.36753/mathenot.421210
AMA Uçar F, Avcı Y. THE SCHIFFER’S THEOREM RE-VISITED. Math. Sci. Appl. E-Notes. Mayıs 2015;3(1):53-57. doi:10.36753/mathenot.421210
Chicago Uçar, Faruk, ve Yusuf Avcı. “THE SCHIFFER’S THEOREM RE-VISITED”. Mathematical Sciences and Applications E-Notes 3, sy. 1 (Mayıs 2015): 53-57. https://doi.org/10.36753/mathenot.421210.
EndNote Uçar F, Avcı Y (01 Mayıs 2015) THE SCHIFFER’S THEOREM RE-VISITED. Mathematical Sciences and Applications E-Notes 3 1 53–57.
IEEE F. Uçar ve Y. Avcı, “THE SCHIFFER’S THEOREM RE-VISITED”, Math. Sci. Appl. E-Notes, c. 3, sy. 1, ss. 53–57, 2015, doi: 10.36753/mathenot.421210.
ISNAD Uçar, Faruk - Avcı, Yusuf. “THE SCHIFFER’S THEOREM RE-VISITED”. Mathematical Sciences and Applications E-Notes 3/1 (Mayıs 2015), 53-57. https://doi.org/10.36753/mathenot.421210.
JAMA Uçar F, Avcı Y. THE SCHIFFER’S THEOREM RE-VISITED. Math. Sci. Appl. E-Notes. 2015;3:53–57.
MLA Uçar, Faruk ve Yusuf Avcı. “THE SCHIFFER’S THEOREM RE-VISITED”. Mathematical Sciences and Applications E-Notes, c. 3, sy. 1, 2015, ss. 53-57, doi:10.36753/mathenot.421210.
Vancouver Uçar F, Avcı Y. THE SCHIFFER’S THEOREM RE-VISITED. Math. Sci. Appl. E-Notes. 2015;3(1):53-7.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.