Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2015, Cilt: 3 Sayı: 2, 45 - 53, 30.10.2015
https://doi.org/10.36753/mathenot.421329

Öz

Kaynakça

  • [1] Agarwal, P., Chand, M., (2013), On new sequence of functions involving pFq, South Asian Journal of Mathematics , Vol. 3 ( 3 ) : 199-210.
  • [2] Agarwal, P., Chand, M., (2013), A new sequence of functions involving pjFqj , MathematicalSciences And Applications E-Notes, Volume 1 No. 2 pp. 173-190.
  • [3] Agarwal, P., Chand, M.,(2013), Graphical Interpretation of the New Sequence of Functions Involving Mittage-Leffler Function Using Matlab, American Journal of Mathematics and Statistics 2013, 3(2): 73-83 DOI: 10.5923/j.ajms.20130302.02.
  • [4] Agarwal, P., Chand, M. and Dwivedi, S.,(2014), A Study on New Sequence of Functions Involving H-Function, American Journal of Applied Mathematics and Statistics, Vol. 2, No. ¯ 1, 34-39.
  • [5] Chak, A. M., (1956) A class of polynomials and generalization of stirling numbers, Duke J. Math., 23, 45-55.
  • [6] Chandel, R.C.S., (1973) A new class of polynomials, Indian J. Math., 15(1), 41-49.
  • [7] Chandel, R.C.S., (1974) A further note on the class of polynomials T α,kn (x, r, p), Indian J.Math.,16(1), 39-48.
  • [8] Chatterjea, S. K., (1964) On generalization of Laguerre polynomials, Rend. Mat. Univ. Padova, 34, 180-190.
  • [9] Gould, H. W. and Hopper, A. T., (1962) Operational formulas connected with two generalizations of Hermite polynomials, Duck Math. J., 29, 51-63.
  • [10] Joshi, C. M. and Prajapat, M. L., (1975) The operator Ta,k, and a generalization of certain classical polynomials, Kyungpook Math. J., 15, 191-199.
  • [11] Mittal, H. B., (1971) A generalization of Laguerre polynomial, Publ. Math. Debrecen, 18, 53-58.
  • [12] Mittal, H. B., (1971) Operational representations for the generalized Laguerre polynomial, Glasnik Mat.Ser III, 26(6), 45-53.
  • [13] Mittal, H. B., (1977) Bilinear and Bilateral generating relations, American J. Math., 99, 23-45.
  • [14] O¨zergin, E., Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
  • [15] Patil, K. R. and Thakare, N. K., (1975) Operational formulas for a function defined by a generalized Rodrigues formula-II, Sci. J. Shivaji Univ. 15, 1-10.
  • [16] Shrivastava, P. N., (1974) Some operational formulas and generalized generating function, The Math. Education, 8, 19-22.
  • [17] Shukla, A. K. and Prajapati J. C., (2007) On some properties of a class of Polynomials suggested by Mittal, Proyecciones J. Math., 26(2), 145-156.
  • [18] Srivastava, H. M. and Choi,J., (2012) Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York.
  • [19] Srivastava, A. N. and Singh, S. N., (1979) Some generating relations connected with a function defined by a Generalized Rodrigues formula, Indian J. Pure Appl. Math., 10(10), 1312-1317.
  • [20] Srivastava, H. M. and Singh, J. P., (1971) A class of polynomials defined by generalized, Rodrigues formula, Ann. Mat. Pura Appl., 90(4), 75-85.
  • [21] Wright, E.M., (1935a) The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc. 10. 286-293.
  • [22] E.Özergin, Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
  • [23] E. Özergin, M. A. O¨zarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235(2011), 4601-4610.

CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS

Yıl 2015, Cilt: 3 Sayı: 2, 45 - 53, 30.10.2015
https://doi.org/10.36753/mathenot.421329

Öz

A remarkably large number of operational techniques have drawn
the attention of several researchers in the study of sequence of functions and
polynomials. In this sequel, here, we aim to introduce a new sequence of
functions involving the generalized Gauss hypergeometric function by using
operational techniques. Some generating relations and finite summation formula
of the sequence presented here are also considered.

Kaynakça

  • [1] Agarwal, P., Chand, M., (2013), On new sequence of functions involving pFq, South Asian Journal of Mathematics , Vol. 3 ( 3 ) : 199-210.
  • [2] Agarwal, P., Chand, M., (2013), A new sequence of functions involving pjFqj , MathematicalSciences And Applications E-Notes, Volume 1 No. 2 pp. 173-190.
  • [3] Agarwal, P., Chand, M.,(2013), Graphical Interpretation of the New Sequence of Functions Involving Mittage-Leffler Function Using Matlab, American Journal of Mathematics and Statistics 2013, 3(2): 73-83 DOI: 10.5923/j.ajms.20130302.02.
  • [4] Agarwal, P., Chand, M. and Dwivedi, S.,(2014), A Study on New Sequence of Functions Involving H-Function, American Journal of Applied Mathematics and Statistics, Vol. 2, No. ¯ 1, 34-39.
  • [5] Chak, A. M., (1956) A class of polynomials and generalization of stirling numbers, Duke J. Math., 23, 45-55.
  • [6] Chandel, R.C.S., (1973) A new class of polynomials, Indian J. Math., 15(1), 41-49.
  • [7] Chandel, R.C.S., (1974) A further note on the class of polynomials T α,kn (x, r, p), Indian J.Math.,16(1), 39-48.
  • [8] Chatterjea, S. K., (1964) On generalization of Laguerre polynomials, Rend. Mat. Univ. Padova, 34, 180-190.
  • [9] Gould, H. W. and Hopper, A. T., (1962) Operational formulas connected with two generalizations of Hermite polynomials, Duck Math. J., 29, 51-63.
  • [10] Joshi, C. M. and Prajapat, M. L., (1975) The operator Ta,k, and a generalization of certain classical polynomials, Kyungpook Math. J., 15, 191-199.
  • [11] Mittal, H. B., (1971) A generalization of Laguerre polynomial, Publ. Math. Debrecen, 18, 53-58.
  • [12] Mittal, H. B., (1971) Operational representations for the generalized Laguerre polynomial, Glasnik Mat.Ser III, 26(6), 45-53.
  • [13] Mittal, H. B., (1977) Bilinear and Bilateral generating relations, American J. Math., 99, 23-45.
  • [14] O¨zergin, E., Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
  • [15] Patil, K. R. and Thakare, N. K., (1975) Operational formulas for a function defined by a generalized Rodrigues formula-II, Sci. J. Shivaji Univ. 15, 1-10.
  • [16] Shrivastava, P. N., (1974) Some operational formulas and generalized generating function, The Math. Education, 8, 19-22.
  • [17] Shukla, A. K. and Prajapati J. C., (2007) On some properties of a class of Polynomials suggested by Mittal, Proyecciones J. Math., 26(2), 145-156.
  • [18] Srivastava, H. M. and Choi,J., (2012) Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York.
  • [19] Srivastava, A. N. and Singh, S. N., (1979) Some generating relations connected with a function defined by a Generalized Rodrigues formula, Indian J. Pure Appl. Math., 10(10), 1312-1317.
  • [20] Srivastava, H. M. and Singh, J. P., (1971) A class of polynomials defined by generalized, Rodrigues formula, Ann. Mat. Pura Appl., 90(4), 75-85.
  • [21] Wright, E.M., (1935a) The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc. 10. 286-293.
  • [22] E.Özergin, Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
  • [23] E. Özergin, M. A. O¨zarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235(2011), 4601-4610.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

P. Agarwal

S. Jaın Bu kişi benim

İ. O. Kıymaz Bu kişi benim

M. Chand Bu kişi benim

S.k.q. Al-omarı

Yayımlanma Tarihi 30 Ekim 2015
Gönderilme Tarihi 13 Ağustos 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 2

Kaynak Göster

APA Agarwal, P., Jaın, S., Kıymaz, İ. O., Chand, M., vd. (2015). CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Mathematical Sciences and Applications E-Notes, 3(2), 45-53. https://doi.org/10.36753/mathenot.421329
AMA Agarwal P, Jaın S, Kıymaz İO, Chand M, Al-omarı S. CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Math. Sci. Appl. E-Notes. Ekim 2015;3(2):45-53. doi:10.36753/mathenot.421329
Chicago Agarwal, P., S. Jaın, İ. O. Kıymaz, M. Chand, ve S.k.q. Al-omarı. “CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS”. Mathematical Sciences and Applications E-Notes 3, sy. 2 (Ekim 2015): 45-53. https://doi.org/10.36753/mathenot.421329.
EndNote Agarwal P, Jaın S, Kıymaz İO, Chand M, Al-omarı S (01 Ekim 2015) CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Mathematical Sciences and Applications E-Notes 3 2 45–53.
IEEE P. Agarwal, S. Jaın, İ. O. Kıymaz, M. Chand, ve S. Al-omarı, “CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS”, Math. Sci. Appl. E-Notes, c. 3, sy. 2, ss. 45–53, 2015, doi: 10.36753/mathenot.421329.
ISNAD Agarwal, P. vd. “CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS”. Mathematical Sciences and Applications E-Notes 3/2 (Ekim 2015), 45-53. https://doi.org/10.36753/mathenot.421329.
JAMA Agarwal P, Jaın S, Kıymaz İO, Chand M, Al-omarı S. CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Math. Sci. Appl. E-Notes. 2015;3:45–53.
MLA Agarwal, P. vd. “CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS”. Mathematical Sciences and Applications E-Notes, c. 3, sy. 2, 2015, ss. 45-53, doi:10.36753/mathenot.421329.
Vancouver Agarwal P, Jaın S, Kıymaz İO, Chand M, Al-omarı S. CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Math. Sci. Appl. E-Notes. 2015;3(2):45-53.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.