Recently, Hazar and Sarıgöl have defined and studied the series space |C₋₁|_{p} for 1≤p<∞ in [1]. The aim of this study is to introduce a new paranormed space |C₋₁|(p), where p=(p_{k}) is a bounded sequence of positive real numbers, which extends the results of Hazar and Sarıgöl in [1] to paranormed space. Besides this, we investigate topological properties and compute the α-,β-, and γ duals of this paranormed space. Finally, we characterize the classes of infinite matrices (|C₋₁|(p),μ) and (μ,|C₋₁|(p)), where μ is any given sequence spaces
Paranormed sequence spaces Absolute summability Cesàro means; Matrix transformations
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Articles |
Yazarlar | |
Yayımlanma Tarihi | 20 Mart 2020 |
Gönderilme Tarihi | 30 Eylül 2019 |
Kabul Tarihi | 14 Şubat 2020 |
Yayımlandığı Sayı | Yıl 2020 Cilt: 8 Sayı: 1 |
The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.