Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 8 Sayı: 1, 69 - 77, 20.03.2020
https://doi.org/10.36753/mathenot.661351

Öz

Kaynakça

  • Blair, D. E.: Geometry of manifolds with structural group U(n) × O(s). J. Differential Ge- ometry 4, 155-167 (1970).
  • Baikoussis, C., Blair, D. E.: On Legendre curves in contact 3-manifolds. Geom. Dedicata 49, 135–142 (1994).
  • Cabrerizo, J. L., Fernandez, L. M., Fernandez M.: The curvature of submanifolds of an S-space form. Acta Math. Hungar. 62, 373-383 (1993).
  • Chen, B.Y.: A report on submanifolds of finite type. Soochow J. Math. 22, 117-337 (1996).
  • Cho, J. T., Inoguchi, J., Lee, J.E.: On slant curves in Sasakian 3-manifolds. Bull. Austral. Math. Soc. 74, 359–367 (2006).
  • Eells, Jr. J., Lemaire, L.: Selected topics in harmonic maps. Amer. Math. Soc., Providence, R.I., (1983).
  • Eells, Jr. J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160 (1964).
  • Fetcu, D., Oniciuc, C.: Explicit formulas for biharmonic submanifolds in Sasakian space forms. Pacific J. Math. 240, 85-107 (2009).
  • Güvenç, Ş., Özgür, C.: On slant curves in S-manifolds. Commun. Korean Math. Soc. 33, no. 1, 293–303 (2018).
  • Hasegawa, I., Okuyama, Y., Abe, T.: On p-th Sasakian manifolds. J. Hokkaido Univ. Ed. Sect. II A, 37, no. 1, 1–16, (1986).
  • Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A, 7, 389-402 (1986).
  • Kim, J. S., Dwivedi, M. K., Tripathi, M. M.: Ricci curvature of integral submanifolds of an S-space form. Bull. Korean Math. Soc. 44 , 395–406 (2007).
  • Nakagawa, H.: On framed f-manifolds. Kodai Math. Sem. Rep. 18, 293-306 (1966).
  • Özgür, C., Güvenç, Ş.: On biharmonic Legendre curves in S-space forms. Turkish J. Math. 38, no. 3, 454–461 (2014).
  • Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Mathematics, 3. Singapore. World Scientific Publishing Co. 1984.

An Extended Family of Slant Curves in S −manifolds

Yıl 2020, Cilt: 8 Sayı: 1, 69 - 77, 20.03.2020
https://doi.org/10.36753/mathenot.661351

Öz

In this paper, we define an extended family of slant curves (i.e. θα−slant curves) in S−manifolds. We give two examples of such curves in R2n+s(−3s), where we choose n = 1, s = 2. Finally, we study biharmonicity of these curves in S−space forms.

Kaynakça

  • Blair, D. E.: Geometry of manifolds with structural group U(n) × O(s). J. Differential Ge- ometry 4, 155-167 (1970).
  • Baikoussis, C., Blair, D. E.: On Legendre curves in contact 3-manifolds. Geom. Dedicata 49, 135–142 (1994).
  • Cabrerizo, J. L., Fernandez, L. M., Fernandez M.: The curvature of submanifolds of an S-space form. Acta Math. Hungar. 62, 373-383 (1993).
  • Chen, B.Y.: A report on submanifolds of finite type. Soochow J. Math. 22, 117-337 (1996).
  • Cho, J. T., Inoguchi, J., Lee, J.E.: On slant curves in Sasakian 3-manifolds. Bull. Austral. Math. Soc. 74, 359–367 (2006).
  • Eells, Jr. J., Lemaire, L.: Selected topics in harmonic maps. Amer. Math. Soc., Providence, R.I., (1983).
  • Eells, Jr. J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160 (1964).
  • Fetcu, D., Oniciuc, C.: Explicit formulas for biharmonic submanifolds in Sasakian space forms. Pacific J. Math. 240, 85-107 (2009).
  • Güvenç, Ş., Özgür, C.: On slant curves in S-manifolds. Commun. Korean Math. Soc. 33, no. 1, 293–303 (2018).
  • Hasegawa, I., Okuyama, Y., Abe, T.: On p-th Sasakian manifolds. J. Hokkaido Univ. Ed. Sect. II A, 37, no. 1, 1–16, (1986).
  • Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A, 7, 389-402 (1986).
  • Kim, J. S., Dwivedi, M. K., Tripathi, M. M.: Ricci curvature of integral submanifolds of an S-space form. Bull. Korean Math. Soc. 44 , 395–406 (2007).
  • Nakagawa, H.: On framed f-manifolds. Kodai Math. Sem. Rep. 18, 293-306 (1966).
  • Özgür, C., Güvenç, Ş.: On biharmonic Legendre curves in S-space forms. Turkish J. Math. 38, no. 3, 454–461 (2014).
  • Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Mathematics, 3. Singapore. World Scientific Publishing Co. 1984.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Şaban Güvenç

Yayımlanma Tarihi 20 Mart 2020
Gönderilme Tarihi 18 Aralık 2019
Kabul Tarihi 14 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 1

Kaynak Göster

APA Güvenç, Ş. (2020). An Extended Family of Slant Curves in S −manifolds. Mathematical Sciences and Applications E-Notes, 8(1), 69-77. https://doi.org/10.36753/mathenot.661351
AMA Güvenç Ş. An Extended Family of Slant Curves in S −manifolds. Math. Sci. Appl. E-Notes. Mart 2020;8(1):69-77. doi:10.36753/mathenot.661351
Chicago Güvenç, Şaban. “An Extended Family of Slant Curves in S −manifolds”. Mathematical Sciences and Applications E-Notes 8, sy. 1 (Mart 2020): 69-77. https://doi.org/10.36753/mathenot.661351.
EndNote Güvenç Ş (01 Mart 2020) An Extended Family of Slant Curves in S −manifolds. Mathematical Sciences and Applications E-Notes 8 1 69–77.
IEEE Ş. Güvenç, “An Extended Family of Slant Curves in S −manifolds”, Math. Sci. Appl. E-Notes, c. 8, sy. 1, ss. 69–77, 2020, doi: 10.36753/mathenot.661351.
ISNAD Güvenç, Şaban. “An Extended Family of Slant Curves in S −manifolds”. Mathematical Sciences and Applications E-Notes 8/1 (Mart 2020), 69-77. https://doi.org/10.36753/mathenot.661351.
JAMA Güvenç Ş. An Extended Family of Slant Curves in S −manifolds. Math. Sci. Appl. E-Notes. 2020;8:69–77.
MLA Güvenç, Şaban. “An Extended Family of Slant Curves in S −manifolds”. Mathematical Sciences and Applications E-Notes, c. 8, sy. 1, 2020, ss. 69-77, doi:10.36753/mathenot.661351.
Vancouver Güvenç Ş. An Extended Family of Slant Curves in S −manifolds. Math. Sci. Appl. E-Notes. 2020;8(1):69-77.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.