Derleme
BibTex RIS Kaynak Göster

Nanotechnology and The Use of Nanoparticles and Its Effect on Wheat Growing

Yıl 2024, , 23 - 29, 31.03.2024
https://doi.org/10.59359/maujan.1344423

Öz

The rapid increase in the human population and the improvement in the living standards of many countries in the world cause the increasing supply of agricultural land to be unmet. Therefore, soil fertility is gaining importance day by day and soil texture is becoming a strategic element. With the development of nanotechnology, the usability of nanoparticles in many fields, especially in agriculture, has started to be investigated or discussed. Studies in agricultural nanotechnology have generally focused on using less pesticides, increasing yields or developing stress-resistant crops. Some studies in this field have started to yield positive results. However, more studies are needed for nanotechnology to be used in agriculture. Because deciding on the use of nanoparticles is an issue that can be reached in the long term. In recent years, the application of nanotechnology-based applications in agriculture is one of the strategies that attract the attention of researchers. Nanotechnology explores a wide spectrum of applications in the fields of biotechnology and agriculture sector, creating a broad spectrum for various applications. Nanotechnology has become a new technology that can be used in various industries such as industry, medicine, food science and safety, smart packaging and agriculture. Nanotechnology, which has been used in many stages of agriculture in recent years, has been widely applied in product production, development, processing, packaging, storage and transportation, and has brought about major changes in food and agricultural systems. It is also used to increase plant resistance and to control the efficacy and safety of pesticides and fertilizers. Thus, the application of nanostructured materials designed for sustainable crop production reduces nutrient losses, suppresses diseases and increases yields. In this study, the strengths, weaknesses, opportunities and targets for the use of nanotechnology and nanoparticles in wheat agriculture were identified and presented.

Kaynakça

  • Abeysingha NS, M Singh, A Islam and VK Sehgal. (2016). Climate change impacts on irrigated rice and wheat production in Gomti River basin of India: a case study. Springer Plus 5:1250
  • Ahmed F, Arshi N, Kumar S, et al. (2013). Nanobiotechnology: scope and potential for crop improvement. In: Tuteja N, Gill SS, editors. Crop Improvement under Adverse Conditions. New York, NY, USA: Springer.
  • Ambrogio et al., (2013). MW Ambrogio , M. Frasconi , MD Yilmaz , X. Chen New methods for the advanced characterization of silica nanoparticle-based drug delivery systems Langmuir , 29 (2013), pp. 15386 - 15393
  • Anonim, (2022) https:// arastirma.tarimorman.gov.tr/ ktae/Belgeler/ Access Date : 25.03.2023
  • Ameta, Satish Kumar, Avinash Kumar Rai, Divya Hiran, Rakshit Ameta, ve Suresh C. Ameta. “Use of Nanomaterials in Food Science”. Biogenic Nano-Particles and their Use in Agro-ecosystems, 21 Mart 2020, 457-88.
  • United Nations, (2019) https://turkiye.un.org/tr World Population Prospects Report. Chowdhury, S., Basu, A., Kundu, S. (2017). Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Frontiers Plant Science, 8, 1-16.
  • Conley et al, (2009) DJ Conley , HW Paerl , RW Howarth , DF Boesch , SP Seitzinger , KE Havens et al. ECOLOGY controlling eutrophication: nitrogen and phosphorus Science , 323 ( 2009 ) , pp. 1014 - 1015.
  • Correll, (1998) DL Correll Alıcı suların ötrofikasyonunda fosforun rolü: bir inceleme J. Çevre. Nitelikli , 27 ( 1998 ) , s. 261 – 266. Daghan, H. (2017). Nano fertilizers. Turkish journal of agricultural research, 4(2): 197-203.
  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nat Nanotechnol. 2010;5:91.
  • SAKA E., GULEL GT. (2015), ‘’Gıda Endüstrisinde Nanoteknoloji Uygulamaları’’ Etlik Vet Mikrobiyol Derg, 2015; 26 (2): 52-57 2.
  • FAO, (2009) FAO (Food and Agriculture Organization of the United Nations) Proceedings of the Expert Meeting on How to Feed the World in 2050. 24–26 June, FAO Headquarters, Rome (2009).
  • Fini, A., Brunetti, C., Loreto, F., Centritto, M., Ferrini, F., Tattini, M. (2017). Isoprene responses and functions in plants challenged by environmental
  • Gonzalez-Melendi P., R Fernandez-Pacheco, MJ Coronado, E Corredor, PS Testillano, MC Risueno and Perez-de-Luque A. (2007). Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Annals of Botany 101(1):187-195.
  • Gunaratne, P., Kottegoda, N., Madusanka, N,. Munaweera, I., Sandaruwan, C., Priyadarshana, Wmgi., Siriwardhana, A., Madhushanka, B., Rathnayake, U., Karunaratne, V. (2016). Two new plant nutrient nanocomposites based on urea coated hydroxyapatite: efficacy and plant uptake. Indian journal of agricultural sciences, 86 (4): 494-499.
  • Hochella MF, Jr, Down SK, Maurice PA, et al. (2008) Nanominerals, mineral nanoparticles and soil systems. Science; 319 :1631-1635. Hu X and Q Zhou. (2014). Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Scientific Reports 4:3782.
  • Kashyap PL, X Xiang and P Heiden (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules 77:36-51.
  • Khot et al, LR Khot , S. Sankaran , J.M. Maja , R. Ehsani , E.W. Schuster (2012). Applications of nanomaterials in agricultural production and plant protection: a review Crop. Prot. , 35s.64 - 70.
  • Lal, (2008) R Lal The promise and limitations of soils for minimizing climate change J. Soil Water Conservation , 63 ( 2008 ) , pages 113A - 118A.
  • Leimu, R., Vergeer, P., Angeloni, F., Ouborg, N. (2010). Habitat fragmentation, climate change, and inbreeding in plants. Annals of the New York Academy of Science, 1195, 84-98.
  • Liu R, Lal R. (2012) Nano-enhanced materials for reclamation of mine lands and other degraded soils: a review. J Nanotechnology ; 2012 :ID 461468.
  • Mahmoodzadeh, H. and R. Aghili. (2014). 'Effect on Germination and Early Growth Characteristics in Wheat Plants (Triticum aestivum L.) Seeds Exposed to TiO2 Nanoparticles' J. Chem. Health. Risks. 4(1), 29–36.
  • Maurice PA, Hochella MF. (2008) Nanoscale particles and processes: a new dimension in soil science. Adv Agron. ;100:123–153.
  • Miralles P, TL Church and AT Harris. (2012). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environmental Science and Technology 46(17):9224-9239.
  • Mishra S, BR Singh, A Singh, C Keswani, AH Naqvi and HB Singh. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS ONE 9(5):e97881.
  • Morteza E, P Moaveni, HA Farahani and M Kiyani. (2013). Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2(1):247.
  • Muller, B., Martre, P. (2019). Plant and crop simulation models: powerful tools to link physiology, genetics, and phenomics, Journal Experimental Botany, 70, 2339- 2344.
  • Nair ve diğerleri, R. Nair , SH Varghese , BG Nair , T. Maekawa , Y. Yoshida , DS Kumar (2010) Nanoparticle material delivery to plants Plant Science, 179 ( 2010 ) , s. 154 – 163.
  • Nakache E, Poulain N, Candau F, Orecchioni AM, Irache JM. (1999). Biopolymer and polymer nanoparticles and their biomedical applications. In: Nalwa HS, editor. Handbook of Nanostructured Materials and Nanotechnology. New York, NY, USA: Academic Press;
  • Ozdemir, M., Kemerli, T. (2016). “Innovative applications of micro and nanoencapsulation in food packaging,” in encapsulation and controlled release technologies in food systems, ed. J. M. lakkis (Chichester: John Wiley & Sons, Ltd).
  • Raliya R, P Biswas and JC Tarafdar. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports 5:22-26.
  • Riahi-Madvar A, F Rezaee and V Jalali. (2012). Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iranian Journal of Plant Physiology 3:595-603.
  • Tripathi S and S Sarkar. (2015). Influence of water soluble carbon dots on the growth of wheat plant. Applied Nanoscience 5(5):609-616.
  • USDA, (2002) United States Department of Agriculture Nanoscale science and engineering for agriculture and food systems; Cooperative State Research, Education and Extension Service, United States Department of Agriculture, Report to the National Planning Workshop; November 18-19, 2002; Washington, DC, USA.
  • Torney et al, F. Torney , BG Trewyn , VS-. Lin , K. Wang (2007) Mesoporous silica nanoparticles deliver DNA and chemicals to plants Nat. Nanotechnology , 2 ( 2007 ) , s. 295 – 300.
  • Velasquez, A.C., Castroverde, C.D.M., He, S.Y. (2018). Plant–pathogen warfare under changing climate conditions. Current Biology, 28, 619-634.
  • Waychunas GA, Kim CS, Banfield JA. (2005). Nanoparticulate iron oxide minerals in soil and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res. 2005; 7 :409-433. Villagarcia et al, (2012). H. Villagarcia , E. Dervishi , K. de Silva , AS Biris , MV Khodakovskaya Surface chemistry of carbon nanotubes affects growth and expression of water channel protein in tomato plants Small , 8, pp. 2328-2334.

NANOTEKNOLOJİ VE NANOPARÇACIKLARIN KULLANIMI VE BUĞDAY YETİŞTİRİCİLİĞİNE ETKİSİ

Yıl 2024, , 23 - 29, 31.03.2024
https://doi.org/10.59359/maujan.1344423

Öz

İnsan nüfusunun hızla artması ve dünyada birçok ülkenin yaşam standartlarının gelişmesi ve iyileşmesi, tarım alanlarında artan arzın karşılanamamasına neden olmaktadır. Bu nedenle toprak verimliliği her geçen gün önem kazanmakta ve toprak teskstürü stratejik bir unsur haline gelmektedir. Nanoteknolojinin gelişmesiyle birlikte nanoparçacıkların birçok alanda kullanılabilirliği araştırılmaya veya tartışılmaya başlanmıştır. Nanoteknoloji, tarımsal alanda kullanılabilirliği araştırılan konulardan biridir. Tarımsal nanoteknolojideki çalışmalar genellikle daha az pestisit kullanmaya, verimi artırmaya veya strese dayanıklı mahsuller geliştirmeye odaklanmıştır. Bu alanda yapılan bazı çalışmalar olumlu sonuçlar vermeye başlamıştır. Ancak nanoteknolojinin tarımda kullanılabilmesi için daha fazla çalışmaya ihtiyaç duyulmaktadır. Nanopartikül kullanımına karar vermek uzun vadede ulaşılabilecek bir konudur. Son yıllarda nanoteknoloji temelli uygulamaların tarım alanlarında uygulanması araştırmacıların ilgisini çeken stratejilerden biridir. Nanoteknoloji, biyoteknoloji ve tarım sektörü alanlarında çeşitli uygulamalar için geniş bir spektrum oluşturarak geniş bir alanı araştırmaktadır. Nanoteknoloji çeşitli endüstrilerde; Sanayi, tıp, gıda bilimi ve güvenliği, akıllı paketleme ve tarım gibi alanlarda kullanılabilecek yeni bir teknoloji haline gelmiştir. Özellikle son yıllarda tarımın birçok aşamasında kullanım alanları artan nanoteknoloji, ürün üretimi, geliştirilmesi, işlenmesi, ambalajlanması, depolanması ve taşınmasında yaygın olarak uygulanarak gıda ve tarım sistemlerinde büyük değişiklikler meydana getirmiştir. Ayrıca bitki direncini arttırmak, pestisit ve gübrelerin etkinliğini ve güvenliğini kontrol etmek için kullanılmaktadır. Böylece sürdürülebilir mahsul üretimi için tasarlanmış nano yapılı malzemelerin uygulanması besin kayıplarını azaltır, hastalıkları bastırır ve verimi artırır. Bu çalışmada, nanoteknoloji ve nanopartiküllerin buğday tarımında kullanımının güçlü, zayıf yönleri, fırsatları ve hedefleri belirtilmiş ve ortaya konmuştur.

Kaynakça

  • Abeysingha NS, M Singh, A Islam and VK Sehgal. (2016). Climate change impacts on irrigated rice and wheat production in Gomti River basin of India: a case study. Springer Plus 5:1250
  • Ahmed F, Arshi N, Kumar S, et al. (2013). Nanobiotechnology: scope and potential for crop improvement. In: Tuteja N, Gill SS, editors. Crop Improvement under Adverse Conditions. New York, NY, USA: Springer.
  • Ambrogio et al., (2013). MW Ambrogio , M. Frasconi , MD Yilmaz , X. Chen New methods for the advanced characterization of silica nanoparticle-based drug delivery systems Langmuir , 29 (2013), pp. 15386 - 15393
  • Anonim, (2022) https:// arastirma.tarimorman.gov.tr/ ktae/Belgeler/ Access Date : 25.03.2023
  • Ameta, Satish Kumar, Avinash Kumar Rai, Divya Hiran, Rakshit Ameta, ve Suresh C. Ameta. “Use of Nanomaterials in Food Science”. Biogenic Nano-Particles and their Use in Agro-ecosystems, 21 Mart 2020, 457-88.
  • United Nations, (2019) https://turkiye.un.org/tr World Population Prospects Report. Chowdhury, S., Basu, A., Kundu, S. (2017). Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Frontiers Plant Science, 8, 1-16.
  • Conley et al, (2009) DJ Conley , HW Paerl , RW Howarth , DF Boesch , SP Seitzinger , KE Havens et al. ECOLOGY controlling eutrophication: nitrogen and phosphorus Science , 323 ( 2009 ) , pp. 1014 - 1015.
  • Correll, (1998) DL Correll Alıcı suların ötrofikasyonunda fosforun rolü: bir inceleme J. Çevre. Nitelikli , 27 ( 1998 ) , s. 261 – 266. Daghan, H. (2017). Nano fertilizers. Turkish journal of agricultural research, 4(2): 197-203.
  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nat Nanotechnol. 2010;5:91.
  • SAKA E., GULEL GT. (2015), ‘’Gıda Endüstrisinde Nanoteknoloji Uygulamaları’’ Etlik Vet Mikrobiyol Derg, 2015; 26 (2): 52-57 2.
  • FAO, (2009) FAO (Food and Agriculture Organization of the United Nations) Proceedings of the Expert Meeting on How to Feed the World in 2050. 24–26 June, FAO Headquarters, Rome (2009).
  • Fini, A., Brunetti, C., Loreto, F., Centritto, M., Ferrini, F., Tattini, M. (2017). Isoprene responses and functions in plants challenged by environmental
  • Gonzalez-Melendi P., R Fernandez-Pacheco, MJ Coronado, E Corredor, PS Testillano, MC Risueno and Perez-de-Luque A. (2007). Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Annals of Botany 101(1):187-195.
  • Gunaratne, P., Kottegoda, N., Madusanka, N,. Munaweera, I., Sandaruwan, C., Priyadarshana, Wmgi., Siriwardhana, A., Madhushanka, B., Rathnayake, U., Karunaratne, V. (2016). Two new plant nutrient nanocomposites based on urea coated hydroxyapatite: efficacy and plant uptake. Indian journal of agricultural sciences, 86 (4): 494-499.
  • Hochella MF, Jr, Down SK, Maurice PA, et al. (2008) Nanominerals, mineral nanoparticles and soil systems. Science; 319 :1631-1635. Hu X and Q Zhou. (2014). Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Scientific Reports 4:3782.
  • Kashyap PL, X Xiang and P Heiden (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules 77:36-51.
  • Khot et al, LR Khot , S. Sankaran , J.M. Maja , R. Ehsani , E.W. Schuster (2012). Applications of nanomaterials in agricultural production and plant protection: a review Crop. Prot. , 35s.64 - 70.
  • Lal, (2008) R Lal The promise and limitations of soils for minimizing climate change J. Soil Water Conservation , 63 ( 2008 ) , pages 113A - 118A.
  • Leimu, R., Vergeer, P., Angeloni, F., Ouborg, N. (2010). Habitat fragmentation, climate change, and inbreeding in plants. Annals of the New York Academy of Science, 1195, 84-98.
  • Liu R, Lal R. (2012) Nano-enhanced materials for reclamation of mine lands and other degraded soils: a review. J Nanotechnology ; 2012 :ID 461468.
  • Mahmoodzadeh, H. and R. Aghili. (2014). 'Effect on Germination and Early Growth Characteristics in Wheat Plants (Triticum aestivum L.) Seeds Exposed to TiO2 Nanoparticles' J. Chem. Health. Risks. 4(1), 29–36.
  • Maurice PA, Hochella MF. (2008) Nanoscale particles and processes: a new dimension in soil science. Adv Agron. ;100:123–153.
  • Miralles P, TL Church and AT Harris. (2012). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environmental Science and Technology 46(17):9224-9239.
  • Mishra S, BR Singh, A Singh, C Keswani, AH Naqvi and HB Singh. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS ONE 9(5):e97881.
  • Morteza E, P Moaveni, HA Farahani and M Kiyani. (2013). Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2(1):247.
  • Muller, B., Martre, P. (2019). Plant and crop simulation models: powerful tools to link physiology, genetics, and phenomics, Journal Experimental Botany, 70, 2339- 2344.
  • Nair ve diğerleri, R. Nair , SH Varghese , BG Nair , T. Maekawa , Y. Yoshida , DS Kumar (2010) Nanoparticle material delivery to plants Plant Science, 179 ( 2010 ) , s. 154 – 163.
  • Nakache E, Poulain N, Candau F, Orecchioni AM, Irache JM. (1999). Biopolymer and polymer nanoparticles and their biomedical applications. In: Nalwa HS, editor. Handbook of Nanostructured Materials and Nanotechnology. New York, NY, USA: Academic Press;
  • Ozdemir, M., Kemerli, T. (2016). “Innovative applications of micro and nanoencapsulation in food packaging,” in encapsulation and controlled release technologies in food systems, ed. J. M. lakkis (Chichester: John Wiley & Sons, Ltd).
  • Raliya R, P Biswas and JC Tarafdar. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports 5:22-26.
  • Riahi-Madvar A, F Rezaee and V Jalali. (2012). Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iranian Journal of Plant Physiology 3:595-603.
  • Tripathi S and S Sarkar. (2015). Influence of water soluble carbon dots on the growth of wheat plant. Applied Nanoscience 5(5):609-616.
  • USDA, (2002) United States Department of Agriculture Nanoscale science and engineering for agriculture and food systems; Cooperative State Research, Education and Extension Service, United States Department of Agriculture, Report to the National Planning Workshop; November 18-19, 2002; Washington, DC, USA.
  • Torney et al, F. Torney , BG Trewyn , VS-. Lin , K. Wang (2007) Mesoporous silica nanoparticles deliver DNA and chemicals to plants Nat. Nanotechnology , 2 ( 2007 ) , s. 295 – 300.
  • Velasquez, A.C., Castroverde, C.D.M., He, S.Y. (2018). Plant–pathogen warfare under changing climate conditions. Current Biology, 28, 619-634.
  • Waychunas GA, Kim CS, Banfield JA. (2005). Nanoparticulate iron oxide minerals in soil and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res. 2005; 7 :409-433. Villagarcia et al, (2012). H. Villagarcia , E. Dervishi , K. de Silva , AS Biris , MV Khodakovskaya Surface chemistry of carbon nanotubes affects growth and expression of water channel protein in tomato plants Small , 8, pp. 2328-2334.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Agronomi
Bölüm Derlemeler
Yazarlar

Fatih Çığ 0000-0002-4042-0566

Çağdaş Can Toprak 0000-0002-0951-7458

Zeki Erden 0000-0003-1613-7768

Yayımlanma Tarihi 31 Mart 2024
Gönderilme Tarihi 16 Ağustos 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Çığ, F., Toprak, Ç. C., & Erden, Z. (2024). Nanotechnology and The Use of Nanoparticles and Its Effect on Wheat Growing. Muş Alparslan Üniversitesi Tarım Ve Doğa Dergisi, 4(1), 23-29. https://doi.org/10.59359/maujan.1344423
AMA Çığ F, Toprak ÇC, Erden Z. Nanotechnology and The Use of Nanoparticles and Its Effect on Wheat Growing. MAÜ Tarım Doğa Derg. Mart 2024;4(1):23-29. doi:10.59359/maujan.1344423
Chicago Çığ, Fatih, Çağdaş Can Toprak, ve Zeki Erden. “Nanotechnology and The Use of Nanoparticles and Its Effect on Wheat Growing”. Muş Alparslan Üniversitesi Tarım Ve Doğa Dergisi 4, sy. 1 (Mart 2024): 23-29. https://doi.org/10.59359/maujan.1344423.
EndNote Çığ F, Toprak ÇC, Erden Z (01 Mart 2024) Nanotechnology and The Use of Nanoparticles and Its Effect on Wheat Growing. Muş Alparslan Üniversitesi Tarım ve Doğa Dergisi 4 1 23–29.
IEEE F. Çığ, Ç. C. Toprak, ve Z. Erden, “Nanotechnology and The Use of Nanoparticles and Its Effect on Wheat Growing”, MAÜ Tarım Doğa Derg, c. 4, sy. 1, ss. 23–29, 2024, doi: 10.59359/maujan.1344423.
ISNAD Çığ, Fatih vd. “Nanotechnology and The Use of Nanoparticles and Its Effect on Wheat Growing”. Muş Alparslan Üniversitesi Tarım ve Doğa Dergisi 4/1 (Mart 2024), 23-29. https://doi.org/10.59359/maujan.1344423.
JAMA Çığ F, Toprak ÇC, Erden Z. Nanotechnology and The Use of Nanoparticles and Its Effect on Wheat Growing. MAÜ Tarım Doğa Derg. 2024;4:23–29.
MLA Çığ, Fatih vd. “Nanotechnology and The Use of Nanoparticles and Its Effect on Wheat Growing”. Muş Alparslan Üniversitesi Tarım Ve Doğa Dergisi, c. 4, sy. 1, 2024, ss. 23-29, doi:10.59359/maujan.1344423.
Vancouver Çığ F, Toprak ÇC, Erden Z. Nanotechnology and The Use of Nanoparticles and Its Effect on Wheat Growing. MAÜ Tarım Doğa Derg. 2024;4(1):23-9.

Flag Counter